Suppr超能文献

治疗前生物标志物水平可提高前列腺切除术后列线图预测生化复发的准确性。

Pre-treatment biomarker levels improve the accuracy of post-prostatectomy nomogram for prediction of biochemical recurrence.

作者信息

Svatek Robert S, Jeldres Claudio, Karakiewicz Pierre I, Suardi Nazareno, Walz Jochen, Roehrborn Claus G, Montorsi Francesco, Slawin Kevin M, Shariat Shahrokh F

机构信息

Department of Urology, University of Texas Southwestern Medical Centre, 1515 Holcombe Blvd., Houston, TX 77030, USA.

出版信息

Prostate. 2009 Jun 1;69(8):886-94. doi: 10.1002/pros.20938.

Abstract

PURPOSE

We tested the ability of several pre-operative blood-based biomarkers to enhance the accuracy of standard post-operative features for the prediction of biochemical recurrence (BCR) after radical prostatectomy (RP).

METHODS

Pre-operative plasma levels of Endoglin, interleukin-6 (IL-6), interleukin-6 soluble receptor (IL-6sR), transforming growth factor-beta1 (TGF-beta1), urokinase plasminogen activator (uPA), urokinase plasminogen inhibitor-1 (PAI-1), urokinase plasminogen receptor (uPAR), vascular cell adhesion molecule-1 (VCAM1), and vascular endothelial growth factor (VEGF) were measured using commercially available enzyme immunoassays in 423 consecutive patients treated with RP for clinically localized prostate cancer. Standard post-operative features consisted of surgical margin status, extracapsular extension, seminal vesicle invasion, lymph node involvement, and pathologic Gleason sum. Multivariable modeling was used to explore the gain in the predictive accuracy. The accuracy was quantified by the c-index statistic and was internally validated with 200 bootstrap resamples.

RESULTS

Plasma IL-6 (P = 0.03), IL-6sR (P < 0.001), TGF-beta1 (P = 0.005), and V-CAM1 (P = 0.01) achieved independent predictor status after adjusting for the effects of standard post-operative features. After stepwise backward variable elimination, a model relying on RP Gleason sum, IL-6sR, TGF-beta1, VCAM1, and uPA improved the predictive accuracy of the standard post-operative model by 4% (86.1% vs. 82.1%, P < 0.001).

CONCLUSIONS

Pre-operative plasma biomarkers improved the accuracy of established post-operative prognostic factors of BCR by a significant margin. Incorporation of these biomarkers into standard predictive models may allow more accurate identification of patients who are likely to fail RP thereby allowing more efficient delivery of adjuvant therapy.

摘要

目的

我们测试了几种术前血液生物标志物增强标准术后特征预测根治性前列腺切除术(RP)后生化复发(BCR)准确性的能力。

方法

使用商用酶免疫测定法,对423例因临床局限性前列腺癌接受RP治疗的连续患者,测定术前血浆中内皮糖蛋白、白细胞介素-6(IL-6)、白细胞介素-6可溶性受体(IL-6sR)、转化生长因子-β1(TGF-β1)、尿激酶型纤溶酶原激活剂(uPA)、尿激酶型纤溶酶原抑制剂-1(PAI-1)、尿激酶型纤溶酶原受体(uPAR)、血管细胞黏附分子-1(VCAM1)和血管内皮生长因子(VEGF)的水平。标准术后特征包括手术切缘状态、包膜外侵犯、精囊侵犯、淋巴结受累及病理Gleason评分总和。采用多变量建模来探索预测准确性的提高。通过c指数统计量对准确性进行量化,并通过200次自抽样重采样进行内部验证。

结果

在校正标准术后特征的影响后,血浆IL-6(P = 0.03)、IL-6sR(P < 0.001)、TGF-β1(P = 0.005)和V-CAM1(P = 0.01)获得了独立预测因子地位。经过逐步向后变量消除,一个依赖于RP Gleason评分总和、IL-6sR、TGF-β1、VCAM1和uPA的模型将标准术后模型的预测准确性提高了4%(86.1%对82.1%,P < 0.001)。

结论

术前血浆生物标志物显著提高了已确立的BCR术后预后因素的准确性。将这些生物标志物纳入标准预测模型可能有助于更准确地识别可能RP失败的患者,从而更有效地提供辅助治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验