Suppr超能文献

血管紧张素II信号通过WNK4-SPAK依赖途径增加肾钠氯共转运体的活性。

Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway.

作者信息

San-Cristobal Pedro, Pacheco-Alvarez Diana, Richardson Ciaran, Ring Aaron M, Vazquez Norma, Rafiqi Fatema H, Chari Divya, Kahle Kristopher T, Leng Qiang, Bobadilla Norma A, Hebert Steven C, Alessi Dario R, Lifton Richard P, Gamba Gerardo

机构信息

Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Tlalpan 14000 Mexico City, Mexico.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4384-9. doi: 10.1073/pnas.0813238106. Epub 2009 Feb 24.

Abstract

Mutations in the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and high serum K(+) levels (hyperkalemia). WNK4 has distinct functional states that regulate the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter NCC and the K(+) channel ROMK. WNK4's functions could enable differential responses to intravascular volume depletion (hypovolemia) and hyperkalemia. Because hypovolemia is uniquely associated with high angiotensin II (AngII) levels, AngII signaling might modulate WNK4 activity. We show that AngII signaling in Xenopus oocytes increases NCC activity by abrogating WNK4's inhibition of NCC but does not alter WNK4's inhibition of ROMK. This effect requires AngII, its receptor AT1R, and WNK4, and is prevented by the AT1R inhibitor losartan. NCC activity is also increased by WNK4 harboring mutations found in PHAII, and this activity cannot be further augmented by AngII signaling, consistent with PHAII mutations providing constitutive activation of the signaling pathway between AT1R and NCC. AngII's effect on NCC is also dependent on the kinase SPAK because dominant-negative SPAK or elimination of the SPAK binding motif in NCC prevent activation of NCC by AngII signaling. These effects extend to mammalian cells. AngII increases phosphorylation of specific sites on SPAK and NCC that are necessary for activation of each in mpkDCT cells. These findings place WNK4 in the signaling pathway between AngII and NCC, and provide a mechanism by which hypovolemia maximizes renal salt reabsoprtion without concomitantly increasing K(+) secretion.

摘要

激酶WNK4的突变会导致II型假性醛固酮增多症(PHAII),这是一种以高血压和高血清钾水平(高钾血症)为特征的综合征。WNK4具有不同的功能状态,通过调节包括钠氯共转运体NCC和钾通道ROMK在内的肾脏转运体和通道的活性,来调节肾脏盐重吸收和钾分泌之间的平衡。WNK4的功能可能使机体对血管内容量减少(血容量不足)和高钾血症产生不同的反应。由于血容量不足与高血管紧张素II(AngII)水平独特相关,AngII信号传导可能会调节WNK4的活性。我们发现,非洲爪蟾卵母细胞中的AngII信号传导通过消除WNK4对NCC的抑制作用来增加NCC活性,但不会改变WNK4对ROMK的抑制作用。这种效应需要AngII、其受体AT1R和WNK4,并且会被AT1R抑制剂氯沙坦所阻断。在PHAII中发现的携带突变的WNK4也会增加NCC活性,并且这种活性不能被AngII信号传导进一步增强,这与PHAII突变提供了AT1R和NCC之间信号通路的组成性激活一致。AngII对NCC的作用也依赖于激酶SPAK,因为显性负性SPAK或NCC中SPAK结合基序的消除会阻止AngII信号传导对NCC的激活。这些效应扩展到了哺乳动物细胞。AngII增加了SPAK和NCC上特定位点的磷酸化,这些位点对于mpkDCT细胞中各自的激活是必需的。这些发现将WNK4置于AngII和NCC之间的信号通路中,并提供了一种机制,通过该机制血容量不足可在不伴随增加钾分泌的情况下最大化肾脏盐重吸收。

相似文献

1
Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4384-9. doi: 10.1073/pnas.0813238106. Epub 2009 Feb 24.
2
Activation of the renal Na+:Cl- cotransporter by angiotensin II is a WNK4-dependent process.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7929-34. doi: 10.1073/pnas.1200947109. Epub 2012 May 1.
4
Mechanisms of sodium-chloride cotransporter modulation by angiotensin II.
Curr Opin Nephrol Hypertens. 2012 Sep;21(5):516-22. doi: 10.1097/MNH.0b013e32835571a4.
5
WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
J Clin Invest. 2003 Apr;111(7):1039-45. doi: 10.1172/JCI17443.
6
An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4025-9. doi: 10.1073/pnas.0611728104. Epub 2007 Feb 22.
7
WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3.
Biochem Biophys Res Commun. 2017 Sep 23;491(3):727-732. doi: 10.1016/j.bbrc.2017.07.121. Epub 2017 Jul 22.
8
WNK-SPAK-NCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4.
Hypertension. 2014 Nov;64(5):1047-53. doi: 10.1161/HYPERTENSIONAHA.114.04036. Epub 2014 Aug 11.
9
Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway.
Pflugers Arch. 2012 Jun;463(6):853-63. doi: 10.1007/s00424-012-1104-0. Epub 2012 May 3.

引用本文的文献

1
The evolving concepts of KS-WNK1 effect on NCC activity.
Am J Physiol Renal Physiol. 2025 Feb 1;328(2):F258-F269. doi: 10.1152/ajprenal.00272.2024. Epub 2024 Dec 31.
4
Angiotensin II-Type-1a Receptor and Renal K + Wasting during Overnight Low-Na + Intake.
J Am Soc Nephrol. 2024 Nov 1;35(11):1478-1492. doi: 10.1681/ASN.0000000000000429. Epub 2024 Jun 24.
5
Monogenic Hypertension Linked to the Renin-Angiotensin-Aldosterone System.
Anatol J Cardiol. 2024 Jun 14;28(9):417-28. doi: 10.14744/AnatolJCardiol.2024.4480.
7
The renin angiotensin aldosterone system.
Pflugers Arch. 2024 May;476(5):705-713. doi: 10.1007/s00424-024-02908-1. Epub 2024 Jan 17.
9
Thirty years of the NaCl cotransporter: from cloning to physiology and structure.
Am J Physiol Renal Physiol. 2023 Oct 1;325(4):F479-F490. doi: 10.1152/ajprenal.00114.2023. Epub 2023 Aug 10.
10
Aldosterone: Renal Action and Physiological Effects.
Compr Physiol. 2023 Mar 30;13(2):4409-4491. doi: 10.1002/cphy.c190043.

本文引用的文献

1
The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.
J Cell Sci. 2008 Oct 15;121(Pt 20):3293-304. doi: 10.1242/jcs.029223.
3
Regulation of NKCC2 by a chloride-sensing mechanism involving the WNK3 and SPAK kinases.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8458-63. doi: 10.1073/pnas.0802966105. Epub 2008 Jun 11.
4
WNK kinases, renal ion transport and hypertension.
Am J Nephrol. 2008;28(5):860-70. doi: 10.1159/000139639. Epub 2008 Jun 12.
5
Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1.
J Cell Sci. 2008 Mar 1;121(Pt 5):675-84. doi: 10.1242/jcs.025312. Epub 2008 Feb 12.
6
Molecular physiology of the WNK kinases.
Annu Rev Physiol. 2008;70:329-55. doi: 10.1146/annurev.physiol.70.113006.100651.
8
ANG II provokes acute trafficking of distal tubule Na+-Cl(-) cotransporter to apical membrane.
Am J Physiol Renal Physiol. 2007 Sep;293(3):F662-9. doi: 10.1152/ajprenal.00064.2007. Epub 2007 May 16.
10
An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4025-9. doi: 10.1073/pnas.0611728104. Epub 2007 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验