Suppr超能文献

相交的特定出生体重死亡率曲线:解开谜团。

Intersecting birth weight-specific mortality curves: solving the riddle.

作者信息

Basso Olga, Wilcox Allen J

机构信息

Epidemiology Branch, National Institute of Environmental Health Sciences/NIH, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.

出版信息

Am J Epidemiol. 2009 Apr 1;169(7):787-97. doi: 10.1093/aje/kwp024. Epub 2009 Feb 24.

Abstract

Small babies from a population with higher infant mortality often have better survival than small babies from a lower-risk population. This phenomenon can in principle be explained entirely by the presence of unmeasured confounding factors that increase mortality and decrease birth weight. Using a previously developed model for birth weight-specific mortality, the authors demonstrate specifically how strong unmeasured confounders can cause mortality curves stratified by known risk factors to intersect. In this model, the addition of a simple exposure (one that reduces birth weight and independently increases mortality) will produce the familiar reversal of risk among small babies. Furthermore, the model explicitly shows how the mix of high- and low-risk babies within a given stratum of birth weight produces lower mortality for high-risk babies at low birth weights. If unmeasured confounders are, in fact, responsible for the intersection of weight-specific mortality curves, then they must also (by virtue of being confounders) contribute to the strength of the observed gradient of mortality by birth weight. It follows that the true gradient of mortality with birth weight would be weaker than what is observed, if indeed there is any true gradient at all.

摘要

来自婴儿死亡率较高人群的小婴儿往往比来自低风险人群的小婴儿有更好的存活率。原则上,这种现象完全可以通过存在未测量的混杂因素来解释,这些因素会增加死亡率并降低出生体重。作者使用先前开发的特定出生体重死亡率模型,具体展示了强大的未测量混杂因素如何导致按已知风险因素分层的死亡率曲线相交。在这个模型中,添加一个简单的暴露因素(一个会降低出生体重并独立增加死亡率的因素)会在小婴儿中产生常见的风险逆转。此外,该模型明确显示了在给定出生体重分层内高风险和低风险婴儿的混合如何在低出生体重时使高风险婴儿的死亡率降低。如果事实上未测量的混杂因素是特定体重死亡率曲线相交的原因,那么它们也必然(由于是混杂因素)对观察到的按出生体重划分的死亡率梯度强度有贡献。由此可见,如果确实存在任何真正的梯度,那么与出生体重相关的真正死亡率梯度会比观察到的更弱。

相似文献

1
Intersecting birth weight-specific mortality curves: solving the riddle.
Am J Epidemiol. 2009 Apr 1;169(7):787-97. doi: 10.1093/aje/kwp024. Epub 2009 Feb 24.
2
Birth weight and mortality: causality or confounding?
Am J Epidemiol. 2006 Aug 15;164(4):303-11. doi: 10.1093/aje/kwj237. Epub 2006 Jul 17.
3
Invited commentary: Crossing curves--it's time to focus on gestational age-specific mortality.
Am J Epidemiol. 2009 Apr 1;169(7):798-801. doi: 10.1093/aje/kwp025. Epub 2009 Feb 24.
4
Birth weight and perinatal mortality: the effect of gestational age.
Am J Public Health. 1992 Mar;82(3):378-82. doi: 10.2105/ajph.82.3.378.
6
Might rare factors account for most of the mortality of preterm babies?
Epidemiology. 2011 May;22(3):320-7. doi: 10.1097/EDE.0b013e31821266c5.
8
Maternal nutrition and birth weight.
Yearb Phys Anthropol. 1987;30:195-220. doi: 10.1002/ajpa.1330300511.
9
Invited commentary: the perils of birth weight--a lesson from directed acyclic graphs.
Am J Epidemiol. 2006 Dec 1;164(11):1121-3; discussion 1124-5. doi: 10.1093/aje/kwj276. Epub 2006 Aug 24.
10
Factors related to birth weight and perinatal mortality.
Br Med Bull. 1981 Sep;37(3):259-64. doi: 10.1093/oxfordjournals.bmb.a071712.

引用本文的文献

1
Does Adjusting for Causal Intermediate Confounders Resolve the Perinatal Crossover Paradox?
Epidemiology. 2025 May 1;36(3):350-362. doi: 10.1097/EDE.0000000000001848. Epub 2025 Feb 25.
2
Inferring fetal growth restriction as rare, severe, and stable over time.
Eur J Epidemiol. 2023 May;38(5):455-464. doi: 10.1007/s10654-023-00985-7. Epub 2023 Apr 13.
3
Epidemiological Studies on Fetal Loss - Better Data and Research Methods are Needed.
Clin Epidemiol. 2020 Aug 13;12:883-887. doi: 10.2147/CLEP.S256297. eCollection 2020.
4
Causal inference in studies of preterm babies: a simulation study.
BJOG. 2018 May;125(6):686-692. doi: 10.1111/1471-0528.14942. Epub 2017 Oct 30.
6
Factors associated with the need for ventilation at birth of neonates weighing ≥2,500 g.
Clinics (Sao Paulo). 2016 Jul;71(7):381-6. doi: 10.6061/clinics/2016(07)05.
8
A prospective study of insulin-like growth factor 1, its binding protein 3, and risk of endometriosis.
Am J Epidemiol. 2015 Jul 15;182(2):148-56. doi: 10.1093/aje/kwv037. Epub 2015 Jun 28.
10
Invited commentary: composite outcomes as an attempt to escape from selection bias and related paradoxes.
Am J Epidemiol. 2014 Feb 1;179(3):368-70. doi: 10.1093/aje/kwt283. Epub 2013 Nov 27.

本文引用的文献

1
From causal diagrams to birth weight-specific curves of infant mortality.
Eur J Epidemiol. 2008;23(3):163-6. doi: 10.1007/s10654-007-9220-4. Epub 2008 Jan 26.
2
Invited commentary: the perils of birth weight--a lesson from directed acyclic graphs.
Am J Epidemiol. 2006 Dec 1;164(11):1121-3; discussion 1124-5. doi: 10.1093/aje/kwj276. Epub 2006 Aug 24.
3
The birth weight "paradox" uncovered?
Am J Epidemiol. 2006 Dec 1;164(11):1115-20. doi: 10.1093/aje/kwj275. Epub 2006 Aug 24.
4
Birth weight and mortality: causality or confounding?
Am J Epidemiol. 2006 Aug 15;164(4):303-11. doi: 10.1093/aje/kwj237. Epub 2006 Jul 17.
5
Reexamining the effects of gestational age, fetal growth, and maternal smoking on neonatal mortality.
BMC Pregnancy Childbirth. 2004 Dec 1;4(1):22. doi: 10.1186/1471-2393-4-22.
6
Invited commentary: what's so bad about curves crossing anyway?
Am J Epidemiol. 2004 Aug 1;160(3):211-2; discussion 215-6. doi: 10.1093/aje/kwh203.
9
MOTHER'S CIGARETTE SMOKING AND SURVIVAL OF INFANT.
Am J Obstet Gynecol. 1964 Feb 15;88:505-18. doi: 10.1016/0002-9378(64)90509-5.
10
Preventing low birthweight and reduction of child mortality.
Trans R Soc Trop Med Hyg. 2003 Jan-Feb;97(1):39-42. doi: 10.1016/s0035-9203(03)90015-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验