Suppr超能文献

儿童急性淋巴细胞白血病:预后因素的最新进展

Childhood acute lymphoblastic leukemia: update on prognostic factors.

作者信息

Vrooman Lynda M, Silverman Lewis B

机构信息

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.

出版信息

Curr Opin Pediatr. 2009 Feb;21(1):1-8. doi: 10.1097/MOP.0b013e32831f1f24.

Abstract

PURPOSE OF REVIEW

With current treatment regimens, event-free survival rates for childhood acute lymphoblastic leukemia (ALL) approach or exceed 80%. This success was achieved, in part, through the implementation of risk-stratified therapy. However, for the 15-20% of children with newly diagnosed ALL who will ultimately relapse, traditional risk assessment remains inadequate. This review highlights recent advances in our understanding of prognostic factors that may be used to refine risk group classification.

RECENT FINDINGS

An increasingly sophisticated understanding of genetic abnormalities in leukemia cells (including chromosomal abnormalities and patterns of gene expression), response to treatment, and host pharmacogenomics offers the potential to enhance or supplant currently applied prognostic criteria for use in treatment planning for childhood ALL.

SUMMARY

Identification of biologically distinctive subsets of ALL through cytogenetic, molecular, and gene expression studies, as well as investigations of minimal residual disease and host pharmacogenomics, offer promising avenues of research. Integration of molecular tools into clinical practice will ultimately allow for more precise risk stratification and individualized treatment planning.

摘要

综述目的

采用当前的治疗方案,儿童急性淋巴细胞白血病(ALL)的无事件生存率接近或超过80%。这一成功部分得益于风险分层治疗的实施。然而,对于最终会复发的15%至20%新诊断的ALL患儿,传统的风险评估仍显不足。本综述重点介绍了我们在理解可能用于完善风险组分类的预后因素方面的最新进展。

最新发现

对白血病细胞中遗传异常(包括染色体异常和基因表达模式)、对治疗的反应以及宿主药物基因组学的认识日益深入,这为加强或取代目前用于儿童ALL治疗规划的预后标准提供了可能。

总结

通过细胞遗传学、分子和基因表达研究,以及对微小残留病和宿主药物基因组学的研究,识别ALL生物学上独特的亚组,提供了有前景的研究途径。将分子工具整合到临床实践中最终将实现更精确的风险分层和个性化治疗规划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验