Exintaris Betty, Nguyen Dan-Thanh T, Lam Michelle, Lang Richard J
Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.
Br J Pharmacol. 2009 Apr;156(7):1098-106. doi: 10.1111/j.1476-5381.2009.00130.x. Epub 2009 Feb 25.
Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca(2+) compartments in regulating slow wave activity in the guinea pig prostate.
Standard intracellular membrane potential recording techniques were used.
The majority (89%) of impaled cells displayed 'slow wave' activity. Cyclopiazonic acid (10 micromol.L(-1)) transiently depolarized (3-9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20-30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol.L(-1)) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP(3)R)-mediated Ca(2+) release with 2-aminoethoxy-diphenylborate (60 micromol.L(-1)) or Xestospongin C (3 micromol.L(-1)) or inhibiting phospholipase C and IP(3) formation using U73122 (5 micromol.L(-1)) or neomycin (1 and 4 mmol.L(-1)) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1-10 micromol.L(-1)), carbonyl cyanide m-chlorophenylhydrazone (1-3 micromol.L(-1)) or rotenone (10 micromol.L(-1)), depolarized the membrane (8-10 mV) before abolishing electrical activity.
These results suggest that slow wave activity was dependent on the cyclical release of Ca(2+) from IP(3)-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.
前列腺平滑肌张力的变化参与了症状性前列腺增生的病因学过程,然而前列腺平滑肌的控制机制尚未完全明确。在此,我们研究了细胞内钙库在调节豚鼠前列腺慢波活动中的作用。
采用标准的细胞内膜电位记录技术。
大多数(89%)刺入细胞显示出“慢波”活动。环匹阿尼酸(10微摩尔·升⁻¹)使前列腺基质的膜电位短暂去极化(3 - 9毫伏),并短暂增加慢波频率。此后,慢波频率在20 - 30分钟内缓慢下降。ryanodine短暂增加慢波频率,尽管在暴露30分钟后慢波频率和时间进程恢复到接近对照值。咖啡因(1毫摩尔·升⁻¹)降低慢波频率,伴随约8毫伏的膜去极化。用2 - 氨基乙氧基 - 二苯基硼酸(60微摩尔·升⁻¹)或西司他汀C(3微摩尔·升⁻¹)阻断肌醇三磷酸受体(IP₃R)介导的钙释放,或使用U73122(5微摩尔·升⁻¹)或新霉素(1和4毫摩尔·升⁻¹)抑制磷脂酶C和IP₃形成,均可降低慢波频率、幅度和持续时间。线粒体解偶联剂对三氟甲氧基羰基氰基苯腙(1 - 10微摩尔·升⁻¹)、羰基氰化物间氯苯腙(1 - 3微摩尔·升⁻¹)或鱼藤酮(10微摩尔·升⁻¹)在消除电活动之前使膜去极化(8 - 10毫伏)。
这些结果表明慢波活动依赖于IP₃控制的细胞内储存和线粒体中钙的周期性释放。这意味着细胞内区室在豚鼠前列腺再生性收缩活动的起始和/或维持中至关重要。