Suppr超能文献

Q热病菌伯氏考克斯体在无宿主细胞条件下的生长

Host cell-free growth of the Q fever bacterium Coxiella burnetii.

作者信息

Omsland Anders, Cockrell Diane C, Howe Dale, Fischer Elizabeth R, Virtaneva Kimmo, Sturdevant Daniel E, Porcella Stephen F, Heinzen Robert A

机构信息

Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4430-4. doi: 10.1073/pnas.0812074106. Epub 2009 Feb 25.

Abstract

The inability to propagate obligate intracellular pathogens under axenic (host cell-free) culture conditions imposes severe experimental constraints that have negatively impacted progress in understanding pathogen virulence and disease mechanisms. Coxiella burnetii, the causative agent of human Q (Query) fever, is an obligate intracellular bacterial pathogen that replicates exclusively in an acidified, lysosome-like vacuole. To define conditions that support C. burnetii growth, we systematically evaluated the organism's metabolic requirements using expression microarrays, genomic reconstruction, and metabolite typing. This led to development of a complex nutrient medium that supported substantial growth (approximately 3 log(10)) of C. burnetii in a 2.5% oxygen environment. Importantly, axenically grown C. burnetii were highly infectious for Vero cells and exhibited developmental forms characteristic of in vivo grown organisms. Axenic cultivation of C. burnetii will facilitate studies of the organism's pathogenesis and genetics and aid development of Q fever preventatives such as an effective subunit vaccine. Furthermore, the systematic approach used here may be broadly applicable to development of axenic media that support growth of other medically important obligate intracellular pathogens.

摘要

无法在无菌(无宿主细胞)培养条件下繁殖专性细胞内病原体,这带来了严重的实验限制,对理解病原体毒力和疾病机制方面的进展产生了负面影响。人类Q热的病原体伯纳特立克次体是一种专性细胞内细菌病原体,仅在酸化的、类似溶酶体的液泡中复制。为了确定支持伯纳特立克次体生长的条件,我们使用表达微阵列、基因组重建和代谢物分型系统地评估了该生物体的代谢需求。这导致开发出一种复杂的营养培养基,在2.5%的氧气环境中能支持伯纳特立克次体大量生长(约3个对数级(10))。重要的是,无菌培养的伯纳特立克次体对Vero细胞具有高度传染性,并表现出体内生长生物体的发育形态。伯纳特立克次体的无菌培养将有助于对该生物体的发病机制和遗传学进行研究,并有助于开发Q热预防措施,如有效的亚单位疫苗。此外,这里使用的系统方法可能广泛适用于开发支持其他医学上重要的专性细胞内病原体生长的无菌培养基。

相似文献

1
Host cell-free growth of the Q fever bacterium Coxiella burnetii.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4430-4. doi: 10.1073/pnas.0812074106. Epub 2009 Feb 25.
2
Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for Niche Restriction.
Front Cell Infect Microbiol. 2017 May 31;7:190. doi: 10.3389/fcimb.2017.00190. eCollection 2017.
3
Use of Axenic Culture Tools to Study Coxiella burnetii.
Curr Protoc Microbiol. 2018 Aug;50(1):e52. doi: 10.1002/cpmc.52. Epub 2018 May 18.
4
Life on the outside: the rescue of Coxiella burnetii from its host cell.
Annu Rev Microbiol. 2011;65:111-28. doi: 10.1146/annurev-micro-090110-102927.
6
Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells.
Vector Borne Zoonotic Dis. 2011 Nov;11(11):1433-8. doi: 10.1089/vbz.2011.0670. Epub 2011 Aug 25.
7
Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii.
J Bacteriol. 2008 May;190(9):3203-12. doi: 10.1128/JB.01911-07. Epub 2008 Feb 29.
8
Developmental transitions of Coxiella burnetii grown in axenic media.
J Microbiol Methods. 2014 Jan;96:104-10. doi: 10.1016/j.mimet.2013.11.010. Epub 2013 Nov 25.
9
Axenic growth of Coxiella burnetii.
Adv Exp Med Biol. 2012;984:215-29. doi: 10.1007/978-94-007-4315-1_11.
10
NAD synthesis is required for intracellular replication of , the causative agent of the neglected zoonotic disease Q fever.
J Biol Chem. 2018 Nov 30;293(48):18636-18645. doi: 10.1074/jbc.RA118.005190. Epub 2018 Oct 12.

引用本文的文献

1
N2A, MCF7, and HepG2 Cells Support Intracellular Replication of .
MicroPubl Biol. 2025 Aug 13;2025. doi: 10.17912/micropub.biology.001716. eCollection 2025.
3
Coxiella burnetii as a model system for understanding host immune response against obligate intracellular, vacuolar pathogens.
PLoS Pathog. 2025 May 28;21(5):e1013071. doi: 10.1371/journal.ppat.1013071. eCollection 2025 May.
4
Acid Tolerance of Is Strain-Specific and Might Depend on Stomach Content.
Pathogens. 2025 Mar 12;14(3):272. doi: 10.3390/pathogens14030272.
5
Identification of a outer membrane porin required for intracellular replication.
Infect Immun. 2025 Apr 8;93(4):e0044824. doi: 10.1128/iai.00448-24. Epub 2025 Mar 12.
6
A platform supporting generation and isolation of random transposon mutants in .
J Bacteriol. 2025 Mar 20;207(3):e0050024. doi: 10.1128/jb.00500-24. Epub 2025 Feb 14.
7
Towards the completion of Koch's postulates for the citrus huanglongbing bacterium, Liberibacter asiaticus.
Hortic Res. 2024 Jan 10;11(3):uhae011. doi: 10.1093/hr/uhae011. eCollection 2024 Mar.
8
CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in .
mSphere. 2024 Dec 19;9(12):e0052324. doi: 10.1128/msphere.00523-24. Epub 2024 Nov 19.
9
Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria.
Nat Commun. 2024 Oct 20;15(1):9051. doi: 10.1038/s41467-024-53446-4.
10
A novel bacterial effector protein mediates ER-LD membrane contacts to regulate host lipid droplets.
EMBO Rep. 2024 Dec;25(12):5331-5351. doi: 10.1038/s44319-024-00266-8. Epub 2024 Sep 27.

本文引用的文献

1
Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates.
Infect Immun. 2008 Jun;76(6):2333-40. doi: 10.1128/IAI.01515-07. Epub 2008 Mar 17.
2
Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii.
J Bacteriol. 2008 May;190(9):3203-12. doi: 10.1128/JB.01911-07. Epub 2008 Feb 29.
3
Infection of human monocyte-derived macrophages with Coxiella burnetii.
Methods Mol Biol. 2008;431:189-200. doi: 10.1007/978-1-60327-032-8_15.
4
A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells.
J Microbiol Methods. 2008 Mar;72(3):321-5. doi: 10.1016/j.mimet.2007.12.015. Epub 2008 Jan 12.
5
Characterization of in vitro chlamydial cultures in low-oxygen atmospheres.
J Bacteriol. 2007 Sep;189(18):6723-6. doi: 10.1128/JB.00279-07. Epub 2007 Jul 13.
6
Gram-positive three-component antimicrobial peptide-sensing system.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9469-74. doi: 10.1073/pnas.0702159104. Epub 2007 May 21.
7
Cysteine metabolism in Legionella pneumophila: characterization of an L-cystine-utilizing mutant.
Appl Environ Microbiol. 2006 Jun;72(6):3993-4000. doi: 10.1128/AEM.00684-06.
8
Macrophage nutriprive antimicrobial mechanisms.
J Leukoc Biol. 2006 Jun;79(6):1117-28. doi: 10.1189/jlb.0206079. Epub 2006 Apr 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验