Motta Alessandro, Fragalà Ignazio L, Marks Tobin J
Dipartimento di Scienze Chimiche, Universita di Catania, and INSTM, UdR Catania, Viale A. Doria 6, 95125 Catania, Italy.
J Am Chem Soc. 2009 Mar 25;131(11):3974-84. doi: 10.1021/ja8077208.
This contribution focuses on the distinctive center-to-center cooperative catalytic properties exhibited by bimetallic "constrained geometry catalysts" (CGCs), and analyzes metal-metal proximity effects on ethylene polymerization processes mediated by (mu-CH(2)-3,3'){(eta(5)-indenyl)1-H(2)Si((t)BuN)}(2) (Zr(2))-derived catalysts using density functional theory. Precatalyst geometries are first discussed, and then ion-pair formation/heterolytic dissociation processes involving the binuclear bis(borane) cocatalyst 1,4-(C(6)F(5))(2)BC(6)F(4)B(C(6)F(5))(2) (BN(2)), are analyzed and compared with those in the parent mononuclear analogue. It is found that, on proceeding from the mononuclear to binuclear catalyst system, ion-pair dissociation energies increase due to the stronger catalyst center-counterdianion interactions. Moreover, in the binuclear case, the interaction energies are markedly sensitive to geometrical matching between the binuclear bis(borane) and the precatalyst Zr-methyl positions. Binuclear catalytic effects between the metal centers are then explored, with the specific contribution from the proximity of the second metal center. Possible agostic interactions of alpha-alkenes pi-coordinated to one Zr center with the second Zr center of the binuclear catalyst are scrutinized for the case of 1-octene. It is argued that these agostic interactions are at least partly responsible for the unusual enchainment properties of the bimetallic catalysts. In particular, the greater polyethylene product branch densities found experimentally for the bimetallic catalysts can be correlated with an intramolecular reinsertion process, assisted by agostic interactions. Moreover, these same agostic interactions involving a chain growing at one metal site with the second metal site of the binuclear catalyst modify the environment to increase propagation/termination rate ratios, in turn favoring increased product molecular weight (M(n)). These effects are observed experimentally at closer Zr...Zr proximities in olefin polymerizations mediated by binuclear CGC catalysts.
本论文聚焦于双金属“受限几何构型催化剂”(CGC)所展现出的独特的中心对中心协同催化特性,并运用密度泛函理论分析了金属-金属 proximity 效应在由(μ-CH₂-3,3'){(η⁵-茚基)[1-H₂Si(t-BuN)](ZrMe₂)}₂(Zr₂)衍生的催化剂介导的乙烯聚合过程中的作用。首先讨论了前体催化剂的几何构型,然后分析了涉及双核双(硼烷)助催化剂 1,4-(C₆F₅)₂BC₆F₄B(C₆F₅)₂(BN₂)的离子对形成/异裂解离过程,并与母体单核类似物中的过程进行了比较。研究发现,从单核催化剂体系转变为双核催化剂体系时,由于催化剂中心与抗衡阴离子之间更强的相互作用,离子对解离能增加。此外,在双核情况下,相互作用能对双核双(硼烷)与前体催化剂 Zr-甲基位置之间的几何匹配极为敏感。接着探讨了金属中心之间的双核催化效应,以及第二个金属中心 proximity 的具体贡献。针对 1-辛烯的情况,详细研究了与一个 Zr 中心π配位的α-烯烃与双核催化剂的第二个 Zr 中心之间可能存在的 agostic 相互作用。研究认为,这些 agostic 相互作用至少部分地解释了双金属催化剂异常的链增长特性。特别是,实验发现双金属催化剂的聚乙烯产物支化密度更高,这可能与分子内再插入过程有关,agostic 相互作用起到了辅助作用。此外,这些涉及在一个金属位点上生长的链与双核催化剂的第二个金属位点之间的相同 agostic 相互作用改变了环境,从而提高了链增长/链终止速率比,进而有利于提高产物的分子量(Mₙ)。在由双核 CGC 催化剂介导的烯烃聚合反应中,当 Zr...Zr 距离更近时,实验观察到了这些效应。