Meseke Maurice, Evers Jan Felix, Duch Carsten
Institute of Biology, Free University of Berlin, Berlin, 14195, Germany.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 May;195(5):473-89. doi: 10.1007/s00359-009-0425-8. Epub 2009 Mar 1.
During the metamorphosis of the holometabolous insect, Manduca sexta, the postembryonic acquisition of adult specific motor behaviors is accompanied by changes in dendritic architecture, membrane currents, and input synapses of identified motoneurons. This study aims to test whether increased activity affects dendritic architecture and sub-dendritic input synapse distribution of the identified flight motoneuron 5 (MN5). Systemic injections of the chloride channel blocker, picrotoxin (PTX), during early pupal stages increase pupal reflex responsiveness, but overall development is not impaired. MN5 input resistance, resting membrane potential, and spiking threshold are not affected. Bath application of PTX to isolated ventral nerve cords evokes spiking in pupal and adult flight motoneurons. Quantitative three-dimensional reconstructions of the dendritic tree of the adult MN5 show that systemic PTX injections into early pupae cause dendritic overgrowth and reduce the density of GABAergic inputs. In contrast, the distribution patterns of GABAergic terminals throughout the dendritic tree remain unaltered. This indicates that increased overall excitability might cause dendritic overgrowth and decreased inhibitory input during postembryonic motoneuron remodeling, whereas sub-dendritic synapse targeting might be controlled by activity-independent signals. Behavioral testing reveals that these neuronal changes do not impede the animal's ability to fly, but impair maximum flight performance.
在全变态昆虫烟草天蛾的变态过程中,成虫特异性运动行为的胚后获得伴随着特定运动神经元的树突结构、膜电流和输入突触的变化。本研究旨在测试活动增加是否会影响已鉴定的飞行运动神经元5(MN5)的树突结构和树突下输入突触分布。在蛹早期全身注射氯离子通道阻滞剂印防己毒素(PTX)可增加蛹的反射反应性,但整体发育不受影响。MN5的输入电阻、静息膜电位和放电阈值不受影响。将PTX浴应用于分离的腹神经索可诱发蛹和成虫飞行运动神经元的放电。对成年MN5树突树的定量三维重建表明,在蛹早期全身注射PTX会导致树突过度生长,并降低GABA能输入的密度。相比之下,GABA能终末在整个树突树上的分布模式保持不变。这表明,在胚后运动神经元重塑过程中,整体兴奋性增加可能导致树突过度生长和抑制性输入减少,而树突下突触靶向可能受与活动无关的信号控制。行为测试表明,这些神经元变化不会妨碍动物飞行的能力,但会损害最大飞行性能。