Suppr超能文献

使用正常模式分析破译MutS和MSH2-MSH6中的错配识别循环。

Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis.

作者信息

Mukherjee Shayantani, Law Sean M, Feig Michael

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.

出版信息

Biophys J. 2009 Mar 4;96(5):1707-20. doi: 10.1016/j.bpj.2008.10.071.

Abstract

Postreplication DNA mismatch repair is essential for maintaining the integrity of genomic information in prokaryotes and eukaryotes. The first step in mismatch repair is the recognition of base-base mismatches and insertions/deletions by bacterial MutS or eukaryotic MSH2-MSH6. Crystal structures of both proteins bound to mismatch DNA reveal a similar molecular architecture but provide limited insight into the detailed molecular mechanism of long-range allostery involved in mismatch recognition and repair initiation. This study describes normal-mode calculations of MutS and MSH2-MSH6 with and without DNA. The results reveal similar protein flexibilities and suggest common dynamic and functional characteristics. A strongly correlated motion is present between the lever domain and ATPase domains, which suggests a pathway for long-range allostery from the N-terminal DNA binding domain to the C-terminal ATPase domains, as indicated by experimental studies. A detailed analysis of individual low-frequency modes of both MutS and MSH2-MSH6 shows changes in the DNA-binding domains coupled to the ATPase sites, which are interpreted in the context of experimental data to arrive at a complete molecular-level mismatch recognition cycle. Distinct conformational states are proposed for DNA scanning, mismatch recognition, repair initiation, and sliding along DNA after mismatch recognition. Hypotheses based on the results presented here form the basis for further experimental and computational studies.

摘要

复制后DNA错配修复对于维持原核生物和真核生物基因组信息的完整性至关重要。错配修复的第一步是细菌MutS或真核生物MSH2 - MSH6识别碱基错配和插入/缺失。与错配DNA结合的这两种蛋白质的晶体结构揭示了相似的分子结构,但对于错配识别和修复起始过程中涉及的远程变构详细分子机制提供的见解有限。本研究描述了有DNA和无DNA情况下MutS和MSH2 - MSH6的正常模式计算。结果揭示了相似的蛋白质灵活性,并表明了共同的动态和功能特征。杠杆结构域和ATP酶结构域之间存在强烈的相关运动,这表明了从N端DNA结合结构域到C端ATP酶结构域的远程变构途径,正如实验研究所表明的那样。对MutS和MSH2 - MSH6各自低频模式的详细分析显示,DNA结合结构域的变化与ATP酶位点相关,结合实验数据对其进行解释,从而得出完整的分子水平错配识别循环。针对DNA扫描、错配识别、修复起始以及错配识别后沿DNA滑动提出了不同的构象状态。基于此处呈现结果的假设构成了进一步实验和计算研究的基础。

相似文献

1
Deciphering the mismatch recognition cycle in MutS and MSH2-MSH6 using normal-mode analysis.
Biophys J. 2009 Mar 4;96(5):1707-20. doi: 10.1016/j.bpj.2008.10.071.
3
Conformational change in MSH2-MSH6 upon binding DNA coupled to ATPase activity.
Biophys J. 2009 Jun 3;96(11):L63-5. doi: 10.1016/j.bpj.2009.04.012.
4
Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops.
Nat Struct Mol Biol. 2011 Dec 18;19(1):72-8. doi: 10.1038/nsmb.2175.
5
Prerecognition Diffusion Mechanism of Human DNA Mismatch Repair Proteins along DNA: Msh2-Msh3 versus Msh2-Msh6.
Biochemistry. 2020 Dec 29;59(51):4822-4832. doi: 10.1021/acs.biochem.0c00669. Epub 2020 Dec 15.
6
The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch.
Nature. 2000 Oct 12;407(6805):711-7. doi: 10.1038/35037523.
8
Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6.
J Biol Chem. 2001 Dec 7;276(49):46225-9. doi: 10.1074/jbc.C100450200. Epub 2001 Oct 18.
9
The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
J Biol Chem. 2018 Nov 23;293(47):18055-18070. doi: 10.1074/jbc.RA118.005439. Epub 2018 Sep 20.

引用本文的文献

1
Molecular dynamics of mismatch detection-How MutS uses indirect readout to find errors in DNA.
Biophys J. 2023 Aug 8;122(15):3031-3043. doi: 10.1016/j.bpj.2023.06.006. Epub 2023 Jun 15.
2
Mutagenic Activation of Glutathione Peroxidase-4: Approaches toward Rational Design of Allosteric Drugs.
ACS Omega. 2022 Aug 16;7(34):29587-29597. doi: 10.1021/acsomega.2c01289. eCollection 2022 Aug 30.
3
Prerecognition Diffusion Mechanism of Human DNA Mismatch Repair Proteins along DNA: Msh2-Msh3 versus Msh2-Msh6.
Biochemistry. 2020 Dec 29;59(51):4822-4832. doi: 10.1021/acs.biochem.0c00669. Epub 2020 Dec 15.
4
Molecular Mechanisms of DNA Replication and Repair Machinery: Insights from Microscopic Simulations.
Adv Theory Simul. 2019 May;2(5). doi: 10.1002/adts.201800191. Epub 2019 Feb 12.
5
Evolutionary Covariance Combined with Molecular Dynamics Predicts a Framework for Allostery in the MutS DNA Mismatch Repair Protein.
J Phys Chem B. 2017 Mar 9;121(9):2049-2061. doi: 10.1021/acs.jpcb.6b11976. Epub 2017 Feb 24.
6
Long-Range Signaling in MutS and MSH Homologs via Switching of Dynamic Communication Pathways.
PLoS Comput Biol. 2016 Oct 21;12(10):e1005159. doi: 10.1371/journal.pcbi.1005159. eCollection 2016 Oct.
7
Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair.
DNA Repair (Amst). 2016 Feb;38:24-31. doi: 10.1016/j.dnarep.2015.11.017. Epub 2015 Dec 2.
8
Is thymidine glycol containing DNA a substrate of E. coli DNA mismatch repair system?
PLoS One. 2014 Aug 18;9(8):e104963. doi: 10.1371/journal.pone.0104963. eCollection 2014.
9
Differential mismatch recognition specificities of eukaryotic MutS homologs, MutSα and MutSβ.
Biophys J. 2014 Jun 3;106(11):2483-92. doi: 10.1016/j.bpj.2014.04.026.

本文引用的文献

1
A New Method for Coarse-Grained Elastic Normal-Mode Analysis.
J Chem Theory Comput. 2006;2(3):464-471. doi: 10.1021/ct050307u.
2
Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6.
Mol Cell. 2007 Nov 9;28(3):359-70. doi: 10.1016/j.molcel.2007.09.008.
3
Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12709-13. doi: 10.1073/pnas.0705129104. Epub 2007 Jul 9.
4
Structure of the human MutSalpha DNA lesion recognition complex.
Mol Cell. 2007 May 25;26(4):579-92. doi: 10.1016/j.molcel.2007.04.018.
5
The effects of nucleotides on MutS-DNA binding kinetics clarify the role of MutS ATPase activity in mismatch repair.
J Mol Biol. 2007 Mar 2;366(4):1087-98. doi: 10.1016/j.jmb.2006.11.092. Epub 2006 Dec 6.
6
Mechanisms in eukaryotic mismatch repair.
J Biol Chem. 2006 Oct 13;281(41):30305-9. doi: 10.1074/jbc.R600022200. Epub 2006 Aug 11.
8
Dual role of MutS glutamate 38 in DNA mismatch discrimination and in the authorization of repair.
EMBO J. 2006 Jan 25;25(2):409-19. doi: 10.1038/sj.emboj.7600936. Epub 2006 Jan 12.
9
Discrimination and versatility in mismatch repair.
DNA Repair (Amst). 2005 Dec 8;4(12):1463-74. doi: 10.1016/j.dnarep.2005.09.002. Epub 2005 Oct 5.
10
Comparison of mode analyses at different resolutions applied to nucleic acid systems.
Biophys J. 2005 Nov;89(5):2939-49. doi: 10.1529/biophysj.105.065664. Epub 2005 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验