Senthilkumar D V, Srinivasan K, Thamilmaran K, Lakshmanan M
Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, India.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 2):066211. doi: 10.1103/PhysRevE.78.066211. Epub 2008 Dec 16.
We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.
通过数值和实验研究,我们在一个以非正弦(方波)力作为准周期力之一的准周期强迫电子电路中,找到了一条创建奇异非混沌吸引子(SNA)的非常规途径。我们发现,由于附加方波型力引起的不稳定性,在准周期吸引子的链中会出现气泡。然后,气泡随着控制参数的变化而扩大并变得越来越皱。最后,气泡变得极其皱(而环面链的其余部分基本不受影响),从而导致SNA的产生;我们将此称为SNA的气泡形成途径。我们使用最大Lyapunov指数及其方差、庞加莱映射、傅里叶振幅谱和谱分布函数,从实验和数值数据两方面对这种产生进行了表征和确认。我们还通过有限时间Lyapunov指数的分布,有力地证实了通过气泡形成途径产生SNA。