Tractenberg R E
Department of Neurology, Georgetown University School of Medicine, Washington, DC 20057, USA.
J Nutr Health Aging. 2009 Mar;13(3):249-55. doi: 10.1007/s12603-009-0067-0.
Alzheimer's disease (AD) is a complex disease process, so finding a single biomarker to track in clinical trials has proven difficult. This paper describes and contrasts statistical methods that might be used with biomarkers in clinical trials for AD, highlighting their differences, limitations and interpretations. The first method is traditional regression, within which one dependent variable, the Best Empirically Supported Indicator (BESI), must be identified. In this approach one biomarker (e.g., the ratio of tau to Abeta42 from CSF) is the indicator for an individual's disease status, and change in that status. The second approach is an exploratory factor analysis (EFA) to consolidate a multitude of candidate dependent variables into a sample-dependent, mathematically-optimized smaller set of 'factors'. The third method is latent variable (LV) modeling of multiple indicators of an entity (e.g., "disease burden"). The LV approach can yield a complex 'dependent variable', the Best Measurement Model Indicator (BMMI). A measurement model represents an entity that several dependent variables reflect or measure, and so can include many 'dependent variables', and estimate their relative contributions to the underlying entity. The selection of a single BESI is an artifact of regression that limits the investigator's ability to utilize all relevant variables representing the entity of interest. EFA results in sample-specific combination of biomarkers that might not generalize to a new sample - and fit of the EFA results cannot be tested. Latent variable methods can be useful to construct powerful, efficient statistical models that optimally combine diverse biomarkers into a single, multidimensional dependent variable that can generalize across samples when they are theory-driven and not sample-dependent. This paper shows that EFA can work to uncover underlying structure, but that it does not always yield solutions that 'fit' the data. It is not recommended as a method to build BMMIs, which will be useful in establishing diagnostic criteria, creating and evaluating benchmarks, and monitoring progression in clinical trials.
阿尔茨海默病(AD)是一个复杂的疾病过程,因此在临床试验中找到一个单一的生物标志物进行追踪已被证明很困难。本文描述并对比了可能用于AD临床试验中生物标志物的统计方法,突出了它们的差异、局限性和解释。第一种方法是传统回归,在这种方法中,必须确定一个因变量,即最佳经验支持指标(BESI)。在这种方法中,一个生物标志物(例如,脑脊液中tau与β淀粉样蛋白42的比值)是个体疾病状态及其状态变化的指标。第二种方法是探索性因素分析(EFA),用于将大量候选因变量整合为一组依赖于样本的、经过数学优化的较小的“因素”。第三种方法是对一个实体(例如“疾病负担”)的多个指标进行潜在变量(LV)建模。LV方法可以产生一个复杂的“因变量”,即最佳测量模型指标(BMMI)。测量模型代表一个由几个因变量反映或测量的实体,因此可以包括许多“因变量”,并估计它们对基础实体的相对贡献。选择单一的BESI是回归的一个人为产物,它限制了研究者利用代表感兴趣实体的所有相关变量的能力。EFA导致生物标志物的特定样本组合,可能无法推广到新样本——并且无法检验EFA结果的拟合度。潜在变量方法有助于构建强大、高效的统计模型,将不同的生物标志物最佳地组合成一个单一的多维因变量,当它们由理论驱动而非依赖于样本时,可以在不同样本中推广。本文表明,EFA可以用于揭示潜在结构,但并不总是能产生“拟合”数据的解决方案。不建议将其作为构建BMMI的方法,BMMI在建立诊断标准、创建和评估基准以及监测临床试验进展方面将很有用。