Wolf Nicholas, Mangel Marc
MRAG Americas, 303 Potrero Street, 42-201, Santa Cruz, California 95062, USA.
Ecol Appl. 2008 Dec;18(8):1932-55. doi: 10.1890/07-1254.1.
We describe a novel spatially and temporally detailed approach for determining the cause or causes of a population decline, using the western Alaskan population of Steller sea lions (Eumetopias jubatus) as an example. Existing methods are mostly based on regression, which limits their utility when there are multiple hypotheses to consider and the data are sparse and noisy. Our likelihood-based approach is unbiased with regard to sample size, and its posterior probability landscape allows for the separate consideration of magnitude and certainty for multiple factors simultaneously. As applied to Steller sea lions, the approach uses a stochastic population model in which the vital rates (fecundity, pup survival, non-pup survival) at a particular rookery in each year are functions of one or more local conditions (total prey availability, species composition of available prey, fisheries activity, predation risk indices). Three vital rates and four scaling functions produce twelve nonexclusive hypotheses, of which we considered 10; we assumed a priori that fecundity would not be affected by fishery activities or predation. The likelihood of all the rookery- and year-specific census data was calculated by averaging across sample paths, using backward iteration and a beta-binomial structure for observation error. We computed the joint maximum likelihood estimates (MLE) of parameters associated with each hypothesis and constructed marginal likelihood curves to examine the support for each effect. We found strong support for a positive effect of total prey availability on pup recruitment, negative effects of prey species composition (pollock fraction) on fecundity and pup survival, and a positive effect of harbor seal density (our inverse proxy for predation risk) on non-pup survival. These results suggest a natural framework for adaptive management; for example, the areas around some of the rookeries could be designated as experimental zones where fishery quotas are contingent upon the results of pre-fishing season survey trawls. We contrast our results with those of previous studies, demonstrating the importance of testing multiple hypotheses simultaneously and quantitatively when investigating the causes of a population decline.
我们以阿拉斯加西部的北海狮(Eumetopias jubatus)种群为例,描述了一种新颖的、在空间和时间上具有详细信息的方法,用于确定种群数量下降的原因。现有方法大多基于回归分析,当需要考虑多个假设且数据稀疏且存在噪声时,其效用会受到限制。我们基于似然性的方法对样本量没有偏差,其后验概率格局允许同时对多个因素的影响程度和确定性进行单独考量。应用于北海狮时,该方法使用了一个随机种群模型,其中每年特定繁殖地的关键率(繁殖力、幼崽存活率、非幼崽存活率)是一个或多个当地条件(总猎物可获得量、可获得猎物的物种组成、渔业活动、捕食风险指数)的函数。三个关键率和四个缩放函数产生了十二个非排他性假设,我们考虑了其中的10个;我们先验假设繁殖力不会受到渔业活动或捕食的影响。通过对样本路径进行平均、使用反向迭代以及针对观测误差采用贝塔 - 二项式结构,计算了所有特定繁殖地和年份的普查数据的似然性。我们计算了与每个假设相关的参数的联合最大似然估计(MLE),并构建了边际似然曲线以检验对每种影响的支持程度。我们发现总猎物可获得量对幼崽补充有积极影响、猎物物种组成(狭鳕比例)对繁殖力和幼崽存活率有负面影响、港海豹密度(我们用于捕食风险的反向代理)对非幼崽存活率有积极影响,这些结果得到了有力支持。这些结果为适应性管理提供了一个自然框架;例如,一些繁殖地周围的区域可以被指定为试验区,渔业配额取决于捕捞季节前调查拖网的结果。我们将我们的结果与先前研究的结果进行了对比,证明了在调查种群数量下降原因时同时并定量地检验多个假设的重要性。