Perez-Campo Flor M, Borrow Julian, Kouskoff Valerie, Lacaud Georges
Paterson Institute for Cancer Research, University of Manchester, USA.
Blood. 2009 May 14;113(20):4866-74. doi: 10.1182/blood-2008-04-152017. Epub 2009 Mar 5.
The monocytic leukemia zinc finger (MOZ) gene encodes a large multidomain protein that contains, besides other domains, 2 coactivation domains for the transcription factor Runx1/acute myeloid leukemia 1 and a histone acetyl transferase (HAT) catalytic domain. Recent studies have demonstrated the critical requirement for the complete MOZ protein in hematopoietic stem cell development and maintenance. However, the specific function of the HAT activity of MOZ remains unknown, as it has been shown that MOZ HAT activity is not required either for its role as Runx1 coactivator or for the leukemic transformation induced by MOZ transcriptional intermediary factor 2 (TIF2). To assess the specific requirement for this HAT activity during hematopoietic development, we have generated embryonic stem cells and mouse lines carrying a point mutation that renders the protein catalytically inactive. We report in this study that mice exclusively lacking the HAT activity of MOZ exhibit significant defects in the number of hematopoietic stem cells and hematopoietic committed precursors as well as a defect in B-cell development. Furthermore, we demonstrate that the failure to maintain a normal number of hematopoietic precursors is caused by the inability of HAT(-/-) cells to expand. These results indicate a specific role of MOZ-driven acetylation in controlling a desirable balance between proliferation and differentiation during hematopoiesis.
单核细胞白血病锌指(MOZ)基因编码一种大型多结构域蛋白,除其他结构域外,该蛋白还包含转录因子Runx1/急性髓系白血病1的2个共激活结构域以及一个组蛋白乙酰转移酶(HAT)催化结构域。最近的研究表明,完整的MOZ蛋白对造血干细胞的发育和维持至关重要。然而,MOZ的HAT活性的具体功能仍不清楚,因为已有研究表明,MOZ的HAT活性对于其作为Runx1共激活因子的作用或由MOZ转录中间因子2(TIF2)诱导的白血病转化均非必需。为了评估造血发育过程中对这种HAT活性的特定需求,我们构建了携带点突变的胚胎干细胞和小鼠品系,该点突变使蛋白失去催化活性。我们在本研究中报告,仅缺乏MOZ的HAT活性的小鼠在造血干细胞和造血定向祖细胞数量以及B细胞发育方面表现出显著缺陷。此外,我们证明造血祖细胞数量无法维持正常是由于HAT(-/-)细胞无法增殖所致。这些结果表明,MOZ驱动的乙酰化在控制造血过程中增殖与分化之间的理想平衡方面具有特定作用。