Suppr超能文献

通过3C技术在酵母中检测基因环。

Detection of gene loops by 3C in yeast.

作者信息

Singh Badri Nath, Ansari Athar, Hampsey Michael

机构信息

Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.

出版信息

Methods. 2009 Aug;48(4):361-7. doi: 10.1016/j.ymeth.2009.02.018. Epub 2009 Mar 6.

Abstract

"Chromosome conformation capture" (3C) is a powerful method to detect physical interaction between any two genomic loci. 3C involves formaldehyde crosslinking to stabilize transient interactions, followed by restriction digestion, ligation and locus-specific PCR. Accordingly, 3C reveals complex three-dimensional interactions between distal genetic elements within intact cells at high resolution. Here, we describe a modified 3C protocol designed for detection of transient chromatin interactions in the yeast Saccharomyces cerevisiae. Using this protocol, we are able to detect juxtaposition of promoter and terminator regions of genes with ORFs as short as 1kb in length. We anticipate that this method will be generally applicable to detect dynamic, short-range chromatin interactions and will facilitate the characterization of gene loops and their functional consequences.

摘要

“染色体构象捕获”(3C)是一种检测任意两个基因组位点之间物理相互作用的强大方法。3C包括甲醛交联以稳定瞬时相互作用,随后进行限制性消化、连接和位点特异性PCR。因此,3C能在完整细胞内以高分辨率揭示远端遗传元件之间复杂的三维相互作用。在此,我们描述了一种经过改进的3C方案,用于检测酿酒酵母中瞬时染色质相互作用。使用该方案,我们能够检测长度短至1kb的开放阅读框(ORF)基因的启动子和终止子区域的并列情况。我们预计这种方法将普遍适用于检测动态的短程染色质相互作用,并将有助于基因环的表征及其功能后果的研究。

相似文献

1
Detection of gene loops by 3C in yeast.
Methods. 2009 Aug;48(4):361-7. doi: 10.1016/j.ymeth.2009.02.018. Epub 2009 Mar 6.
2
Detection of short-range chromatin interactions by chromosome conformation capture (3C) in yeast.
Methods Mol Biol. 2014;1205:209-18. doi: 10.1007/978-1-4939-1363-3_13.
3
Mapping cis- and trans- chromatin interaction networks using chromosome conformation capture (3C).
Methods Mol Biol. 2009;464:105-21. doi: 10.1007/978-1-60327-461-6_7.
4
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
Methods. 2020 Jan 1;170:4-16. doi: 10.1016/j.ymeth.2019.06.023. Epub 2019 Jun 25.
5
Analysis of interactions between genomic loci through Chromosome Conformation Capture (3C).
Curr Protoc Cell Biol. 2012 Sep;Chapter 22:Unit22.15. doi: 10.1002/0471143030.cb2215s56.
6
Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C).
Nat Protoc. 2009;4(8):1216-29. doi: 10.1038/nprot.2009.113. Epub 2009 Jul 30.
7
Chromosome conformation capture (3C) of tandem arrays in yeast.
Methods Mol Biol. 2014;1205:219-29. doi: 10.1007/978-1-4939-1363-3_14.
8
Detecting Long-Range Enhancer-Promoter Interactions by Quantitative Chromosome Conformation Capture.
Methods Mol Biol. 2017;1468:51-62. doi: 10.1007/978-1-4939-4035-6_6.
9
Chromosome Conformation Capture in Drosophila.
Methods Mol Biol. 2016;1480:207-12. doi: 10.1007/978-1-4939-6380-5_18.
10
3C-digital PCR for quantification of chromatin interactions.
BMC Mol Biol. 2016 Dec 6;17(1):23. doi: 10.1186/s12867-016-0076-6.

引用本文的文献

1
Chromosome conformation capture that detects novel cis- and trans-interactions in budding yeast.
Methods. 2020 Jan 1;170:4-16. doi: 10.1016/j.ymeth.2019.06.023. Epub 2019 Jun 25.
2
Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae.
Nucleic Acids Res. 2018 Nov 16;46(20):10649-10668. doi: 10.1093/nar/gky743.
4
Promoter-Terminator Gene Loops Affect Alternative 3'-End Processing in Yeast.
J Biol Chem. 2016 Apr 22;291(17):8960-8. doi: 10.1074/jbc.M115.687491. Epub 2016 Feb 29.
5
Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis.
Cell Rep. 2015 Nov 24;13(8):1610-22. doi: 10.1016/j.celrep.2015.10.030. Epub 2015 Nov 12.
6
Arrested replication forks guide retrotransposon integration.
Science. 2015 Sep 25;349(6255):1549-53. doi: 10.1126/science.aaa3810.
7
Gene looping facilitates TFIIH kinase-mediated termination of transcription.
Sci Rep. 2015 Aug 19;5:12586. doi: 10.1038/srep12586.
8
A simple biophysical model emulates budding yeast chromosome condensation.
Elife. 2015 Apr 29;4:e05565. doi: 10.7554/eLife.05565.
9
Transcription factor regulation and chromosome dynamics during pseudohyphal growth.
Mol Biol Cell. 2014 Sep 1;25(17):2669-76. doi: 10.1091/mbc.E14-04-0871. Epub 2014 Jul 9.
10
Dissecting the cis and trans elements that regulate adjacent-gene coregulation in Saccharomyces cerevisiae.
Eukaryot Cell. 2014 Jun;13(6):738-48. doi: 10.1128/EC.00317-13. Epub 2014 Apr 4.

本文引用的文献

1
A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations.
Genome Res. 2008 Jul;18(7):1171-9. doi: 10.1101/gr.073452.107. Epub 2008 May 23.
2
Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene.
Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5160-5. doi: 10.1073/pnas.0801048105. Epub 2008 Mar 28.
3
Gene regulation in the third dimension.
Science. 2008 Mar 28;319(5871):1793-4. doi: 10.1126/science.1152850.
4
High-resolution circular chromosome conformation capture assay.
Nat Protoc. 2008;3(2):303-13. doi: 10.1038/nprot.2007.540.
5
Chromosome conformation capture carbon copy technology.
Curr Protoc Mol Biol. 2007 Oct;Chapter 21:Unit 21.14. doi: 10.1002/0471142727.mb2114s80.
6
Mapping chromatin interactions by chromosome conformation capture.
Curr Protoc Mol Biol. 2006 May;Chapter 21:Unit 21.11. doi: 10.1002/0471142727.mb2111s74.
8
An evaluation of 3C-based methods to capture DNA interactions.
Nat Methods. 2007 Nov;4(11):895-901. doi: 10.1038/nmeth1114.
9
A transcription-independent role for TFIIB in gene looping.
Mol Cell. 2007 Sep 7;27(5):806-16. doi: 10.1016/j.molcel.2007.07.013.
10
The molecular basis of eukaryotic transcription (Nobel Lecture).
Angew Chem Int Ed Engl. 2007;46(37):6956-65. doi: 10.1002/anie.200701832.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验