Joubert Olivier R, Rousselet Guillaume A, Fabre-Thorpe Michèle, Fize Denis
Centre de Recherche Cerveau et Cognition, Université de Toulouse, UPS, France.
J Vis. 2009 Jan 8;9(1):2.1-16. doi: 10.1167/9.1.2.
This study aimed to determine the extent to which rapid visual context categorization relies on global scene statistics, such as diagnostic amplitude spectrum information. We measured performance in a Natural vs. Man-made context categorization task using a set of achromatic photographs of natural scenes equalized in average luminance, global contrast, and spectral energy. Results suggest that the visual system might use amplitude spectrum characteristics of the scenes to speed up context categorization processes. In a second experiment, we measured performance impairments with a parametric degradation of phase information applied to power spectrum averaged scenes. Results showed that performance accuracy was virtually unaffected up to 50% of phase blurring, but then rapidly fell to chance level following a sharp sigmoid curve. Response time analysis showed that subjects tended to make their fastest responses based on the presence of diagnostic man-made information; if no man-made characteristics enable to reach rapidly a decision threshold, because of a natural scene display or a high level of noise, the alternative decision for a natural response became increasingly favored. This two-phase strategy could maximize categorization performance if the diagnostic features of man-made environments tolerate higher levels of noise than natural features, as proposed recently.
本研究旨在确定快速视觉情境分类在多大程度上依赖于全局场景统计信息,如诊断性振幅谱信息。我们使用一组在平均亮度、全局对比度和光谱能量方面进行了均衡处理的自然场景消色差照片,测量了自然与人工情境分类任务中的表现。结果表明,视觉系统可能会利用场景的振幅谱特征来加速情境分类过程。在第二个实验中,我们通过对功率谱平均场景应用相位信息的参数化退化来测量表现损伤。结果显示,在相位模糊达到50%之前,表现准确性实际上未受影响,但随后遵循一条陡峭的S形曲线迅速降至随机水平。反应时间分析表明,受试者倾向于基于诊断性人工信息的存在做出最快反应;如果由于自然场景显示或高噪声水平,没有人工特征能够迅速达到决策阈值,那么自然反应的替代决策就会越来越受到青睐。如果如最近所提出的,人工环境的诊断特征比自然特征能够容忍更高水平的噪声,那么这种两阶段策略可以使分类表现最大化。