Suppr超能文献

核苷酸的双线性指数:用于核酸生物信息学研究的新型生物大分子描述符。I. 巴龙霉素与HIV-1 Psi-RNA包装区域亲和力常数的预测。

Nucleotide's bilinear indices: novel bio-macromolecular descriptors for bioinformatics studies of nucleic acids. I. Prediction of paromomycin's affinity constant with HIV-1 Psi-RNA packaging region.

作者信息

Marrero-Ponce Yovani, Ortega-Broche Sadiel E, Díaz Yunaimy Echeverría, Alvarado Ysaias J, Cubillan Nestor, Cardoso Gladys Casas, Torrens Francisco, Pérez-Giménez Facundo

机构信息

Unit of Computer-Aided Molecular Biosilico Discovery and Bioinformatic Research (CAMD-BIR Unit), Faculty of Chemistry-Pharmacy, Central University of Las Villas, Santa Clara 54830, Villa Clara, Cuba.

出版信息

J Theor Biol. 2009 Jul 21;259(2):229-41. doi: 10.1016/j.jtbi.2009.02.021. Epub 2009 Mar 9.

Abstract

A new set of nucleotide-based bio-macromolecular descriptors are presented. This novel approach to bio-macromolecular design from a linear algebra point of view is relevant to nucleic acids quantitative structure-activity relationship (QSAR) studies. These bio-macromolecular indices are based on the calculus of bilinear maps on Re(n)[b(mk)(x (m),y (m)):Re(n) x Re(n)-->Re] in canonical basis. Nucleic acid's bilinear indices are calculated from kth power of non-stochastic and stochastic nucleotide's graph-theoretic electronic-contact matrices, M(m)(k) and (s)M(m)(k), respectively. That is to say, the kth non-stochastic and stochastic nucleic acid's bilinear indices are calculated using M(m)(k) and (s)M(m)(k) as matrix operators of bilinear transformations. Moreover, biochemical information is codified by using different pair combinations of nucleotide-base properties as weightings (experimental molar absorption coefficient epsilon(260) at 260 nm and pH=7.0, first (Delta E(1)) and second (Delta E(2)) single excitation energies in eV, and first (f(1)) and second (f(2)) oscillator strength values (of the first singlet excitation energies) of the nucleotide DNA-RNA bases. As example of this approach, an interaction study of the antibiotic paromomycin with the packaging region of the HIV-1 Psi-RNA have been performed and it have been obtained several linear models in order to predict the interaction strength. The best linear model obtained by using non-stochastic bilinear indices explains about 91% of the variance of the experimental Log K (R=0.95 and s=0.08 x 10(-4)M(-1)) as long as the best stochastic bilinear indices-based equation account for 93% of the Log K variance (R=0.97 and s=0.07 x 10(-4)M(-1)). The leave-one-out (LOO) press statistics, evidenced high predictive ability of both models (q(2)=0.86 and s(cv)=0.09 x 10(-4)M(-1) for non-stochastic and q(2)=0.91 and s(cv)=0.08 x 10(-4)M(-1) for stochastic bilinear indices). The nucleic acid's bilinear indices-based models compared favorably with other nucleic acid's indices-based approaches reported nowadays. These models also permit the interpretation of the driving forces of the interaction process. In this sense, developed equations involve short-reaching (k<or=3), middle-reaching (4<k<9), and far-reaching (k=10 or greater) nucleotide's bilinear indices. This situation points to electronic and topologic nucleotide's backbone interactions control of the stability profile of paromomycin-RNA complexes. Consequently, the present approach represents a novel and rather promising way to theoretical-biology studies.

摘要

本文提出了一组新的基于核苷酸的生物大分子描述符。这种从线性代数角度进行生物大分子设计的新方法与核酸定量构效关系(QSAR)研究相关。这些生物大分子指标基于标准基下Re(n)[b(mk)(x (m),y (m)):Re(n)×Re(n)→Re]上双线性映射的微积分。核酸的双线性指标分别由非随机和随机核苷酸的图论电子接触矩阵M(m)(k)和(s)M(m)(k)的k次幂计算得出。也就是说,第k个非随机和随机核酸的双线性指标是使用M(m)(k)和(s)M(m)(k)作为双线性变换的矩阵算子来计算的。此外,通过使用核苷酸碱基性质的不同配对组合作为权重(260nm和pH = 7.0时的实验摩尔吸收系数ε(260)、以电子伏特为单位的第一(ΔE(1))和第二(ΔE(2))单激发能,以及核苷酸DNA - RNA碱基的第一(f(1))和第二(f(2))振子强度值(第一单线态激发能的))来编码生化信息。作为该方法的一个例子,已经进行了抗生素巴龙霉素与HIV - 1 Psi - RNA包装区域的相互作用研究,并获得了几个线性模型以预测相互作用强度。使用非随机双线性指标获得的最佳线性模型解释了实验Log K方差的约91%(R = 0.95且s = 0.08×10(-4)M(-1)),而基于最佳随机双线性指标的方程解释了Log K方差的93%(R = 0.97且s = 0.07×10(-4)M(-1))。留一法(LOO)交叉验证统计表明这两个模型都具有很高的预测能力(非随机双线性指标的q(2)=0.86且s(cv)=0.09×10(-4)M(-1),随机双线性指标的q(2)=0.91且s(cv)=0.08×10(-4)M(-1))。基于核酸双线性指标的模型与目前报道的其他基于核酸指标的方法相比具有优势。这些模型还允许解释相互作用过程的驱动力。从这个意义上说,所开发的方程涉及短程(k≤3)、中程(4 < k < 9)和远程(k = 10或更大)核苷酸的双线性指标。这种情况表明巴龙霉素 - RNA复合物稳定性概况受电子和拓扑核苷酸碱基主链相互作用的控制。因此,本方法代表了一种新颖且颇具前景的理论生物学研究方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验