Suppr超能文献

通过基于功能注释的加权整合多源信息:酵母中的基因功能预测

Combining multisource information through functional-annotation-based weighting: gene function prediction in yeast.

作者信息

Ray Shubhra Sankar, Bandyopadhyay Sanghamitra, Pal Sankar K

机构信息

Center for Soft Computing Research, Indian Statistical Institute, Kolkata 700108, India.

出版信息

IEEE Trans Biomed Eng. 2009 Feb;56(2):229-36. doi: 10.1109/TBME.2008.2005955. Epub 2008 Sep 30.

Abstract

MOTIVATION

One of the important goals of biological investigation is to predict the function of unclassified gene. Although there is a rich literature on multi data source integration for gene function prediction, there is hardly any similar work in the framework of data source weighting using functional annotations of classified genes. In this investigation, we propose a new scoring framework, called biological score (BS) and incorporating data source weighting, for predicting the function of some of the unclassified yeast genes.

METHODS

The BS is computed by first evaluating the similarities between genes, arising from different data sources, in a common framework, and then integrating them in a linear combination style through weights. The relative weight of each data source is determined adaptively by utilizing the information on yeast gene ontology (GO)-slim process annotations of classified genes, available from Saccharomyces Genome Database (SGD). Genes are clustered by a method called K-BS, where, for each gene, a cluster comprising that gene and its K nearest neighbors is computed using the proposed score (BS). The performances of BS and K-BS are evaluated with gene annotations available from Munich Information Center for Protein Sequences (MIPS).

RESULTS

We predict the functional categories of 417 classified genes from 417 clusters with 0.98 positive predictive value using K-BS. The functional categories of 12 unclassified yeast genes are also predicted.

CONCLUSION

Our experimental results indicate that considering multiple data sources and estimating their weights with annotations of classified genes can considerably enhance the performance of BS. It has been found that even a small proportion of annotated genes can provide improvements in finding true positive gene pairs using BS.

摘要

动机

生物学研究的重要目标之一是预测未分类基因的功能。尽管关于基因功能预测的多数据源整合已有丰富的文献,但在利用已分类基因的功能注释进行数据源加权的框架内,几乎没有类似的工作。在本研究中,我们提出了一种新的评分框架,称为生物学评分(BS),并纳入数据源加权,用于预测一些未分类酵母基因的功能。

方法

通过首先在一个通用框架中评估来自不同数据源的基因之间的相似性,然后通过权重以线性组合的方式将它们整合,来计算BS。每个数据源的相对权重通过利用来自酵母基因组数据库(SGD)的已分类基因的酵母基因本体(GO)-精简过程注释信息来自适应确定。基因通过一种称为K-BS的方法进行聚类,其中,对于每个基因,使用所提出的评分(BS)计算一个包含该基因及其K个最近邻的聚类。使用来自慕尼黑蛋白质序列信息中心(MIPS)的基因注释来评估BS和K-BS的性能。

结果

我们使用K-BS从417个聚类中预测了417个已分类基因的功能类别,阳性预测值为0.98。还预测了12个未分类酵母基因的功能类别。

结论

我们的实验结果表明,考虑多个数据源并利用已分类基因的注释估计它们的权重可以显著提高BS的性能。已经发现,即使一小部分注释基因也可以在使用BS找到真正阳性基因对方面有所改进。

相似文献

1
Combining multisource information through functional-annotation-based weighting: gene function prediction in yeast.
IEEE Trans Biomed Eng. 2009 Feb;56(2):229-36. doi: 10.1109/TBME.2008.2005955. Epub 2008 Sep 30.
2
AVID: an integrative framework for discovering functional relationships among proteins.
BMC Bioinformatics. 2005 Jun 1;6:136. doi: 10.1186/1471-2105-6-136.
3
A weighted power framework for integrating multisource information: gene function prediction in yeast.
IEEE Trans Biomed Eng. 2012 Apr;59(4):1162-8. doi: 10.1109/TBME.2012.2186689. Epub 2012 Feb 3.
6
Gene expression trends and protein features effectively complement each other in gene function prediction.
Bioinformatics. 2009 Feb 1;25(3):322-30. doi: 10.1093/bioinformatics/btn625. Epub 2008 Dec 2.
10
A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
Bioinformatics. 2006 Aug 15;22(16):2037-43. doi: 10.1093/bioinformatics/btl345. Epub 2006 Jul 4.

引用本文的文献

1
Assessing the gain of biological data integration in gene networks inference.
BMC Genomics. 2012;13 Suppl 6(Suppl 6):S7. doi: 10.1186/1471-2164-13-S6-S7. Epub 2012 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验