Marateb Hamid Reza, McGill Kevin C
Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica, Politecnico di Torino, Turin 10129, Italy.
IEEE Trans Biomed Eng. 2009 Mar;56(3):916-9. doi: 10.1109/TBME.2008.2005953. Epub 2008 Sep 30.
This paper presents an algorithm to resolve superimposed action potentials encountered during the decomposition of electromyographic signals. The algorithm uses particle swarm optimization with a variety of features including randomization, crossover, and multiple swarms. In a simulation study involving realistic superpositions of two to five motor-unit action potentials, the algorithm had an accuracy of 98%.
本文提出了一种算法,用于解决肌电信号分解过程中遇到的叠加动作电位问题。该算法采用了具有多种特性的粒子群优化算法,包括随机化、交叉和多群体。在一项涉及两到五个运动单位动作电位实际叠加的模拟研究中,该算法的准确率达到了98%。