Rao Min, Varghese Tomy
University of Wisconsin, Madison, WI 53706, USA.
IEEE Trans Biomed Eng. 2009 Mar;56(3):760-9. doi: 10.1109/TBME.2008.2005907. Epub 2008 Sep 26.
In the current practice of ultrasound elastography, only the axial component of the displacement vector is estimated and used to produce strain images. A method was recently proposed by our group to estimate both the axial and lateral components of a displacement vector using RF echo signal data acquired along multiple angular insonification directions of the ultrasound beam. Previous work has demonstrated that it is important to choose appropriate values for the maximum beam angle and angular increment to achieve optimal performance with this technique. In this paper, we present error propagation analysis using the least-square fitting process for the optimization of the angular increment and the maximum beam steered angle. Ultrasound simulations are performed to corroborate the theoretical prediction of the optimal values for the maximum beam angle and angular increment. Selection of the optimal parameters depends on system parameters, such as center frequency and aperture size. For typical system parameters, the optimal maximum beam angle is around 10 degrees for axial strain estimation and around 15 degrees for lateral strain estimation. The optimal angular increment is around 4 degrees-6 degrees, which indicates that only five to seven beam angles are required for this strain-tensor estimation technique.
在当前的超声弹性成像实践中,仅估计位移矢量的轴向分量并用于生成应变图像。我们团队最近提出了一种方法,利用沿超声束多个角度的声束方向采集的射频回波信号数据来估计位移矢量的轴向和横向分量。先前的工作表明,为实现该技术的最佳性能,选择合适的最大声束角度和角度增量值非常重要。在本文中,我们使用最小二乘拟合过程进行误差传播分析,以优化角度增量和最大声束转向角度。进行超声模拟以证实最大声束角度和角度增量最佳值的理论预测。最佳参数的选择取决于系统参数,如中心频率和孔径大小。对于典型的系统参数,轴向应变估计的最佳最大声束角度约为10度,横向应变估计的最佳最大声束角度约为15度。最佳角度增量约为4度至6度,这表明该应变张量估计技术仅需要五到七个声束角度。