Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S. Dearborn St. WH 314, Chicago, Illinois 60616, USA.
J Biomed Mater Res A. 2010 Feb;92(2):724-32. doi: 10.1002/jbm.a.32320.
The initiation of coagulation on biomaterials is attributed to the contact pathway of coagulation. However, recent discoveries of blood-borne tissue factor (TF) activity suggest that the TF pathway of coagulation may contribute to thrombosis on biomaterials. To evaluate the role of TF bearing microparticles to biomaterial thrombogenicity, the adhesion of monocyte-derived macrophage microparticles (MMPs) to bare, bovine serum albumin (BSA) blocked, and plasma-coated materials was examined. MMP suspensions consisted of 20-37% TF positive particles that exhibited TF activity. Data from static experiments with polyethylene (PE), polydimethylsiloxane (PDMS), polystyrene (PS), and glass knitted and woven Dacron(R) grafts showed that MMPs adhered to uncoated, and plasma coated surfaces supported TF activity, whereas surfaces blocked with BSA supported less activity. Flow studies were performed on plasma-coated glass and tissue culture-treated polystyrene (TCPS) as a model system to demonstrate deposition and firm adhesion of microparticles under physiologic flow conditions. MMPs deposited and imparted TF activity to plasma-coated glass at wall shear rates of 100, 400, and 1200 sec(-1). Deposition on TCPS was comparable to glass at 100 sec(-1), but virtually nonexistent at the two higher shear rates after a 1 h perfusion, implying material and shear dependent adhesion. The localization of procoagulant MMPs to biomaterial surfaces could lead to an increased risk of thrombosis on cardiovascular implants beyond that anticipated by the contact pathway alone.
生物材料表面凝血的启动归因于接触途径的凝血。然而,最近发现血液来源的组织因子(TF)活性表明,凝血的 TF 途径可能导致生物材料上的血栓形成。为了评估携带 TF 的微粒对生物材料血栓形成的作用,研究了单核细胞衍生的巨噬细胞微粒(MMPs)与裸、牛血清白蛋白(BSA)封闭和血浆涂层材料的粘附。MMP 悬浮液由 20-37%TF 阳性颗粒组成,这些颗粒表现出 TF 活性。在静态实验中,聚乙烯(PE)、聚二甲基硅氧烷(PDMS)、聚苯乙烯(PS)和玻璃编织和机织达可纶(R)移植物的数据表明,MMPs 附着在未涂层和血浆涂层表面上,支持 TF 活性,而用 BSA 封闭的表面支持较少的活性。在血浆涂层玻璃和组织培养处理的聚苯乙烯(TCPS)作为模型系统上进行流动研究,以证明在生理流动条件下微粒的沉积和牢固粘附。在 100、400 和 1200 sec(-1)的壁剪切速率下,MMPs 在血浆涂层玻璃上沉积并赋予 TF 活性。在 100 sec(-1)时,在 TCPS 上的沉积与玻璃相当,但在 1 小时灌注后,在两个较高的剪切速率下几乎不存在,这意味着材料和剪切依赖性粘附。促凝 MMPs 定位于生物材料表面可能会导致心血管植入物的血栓形成风险增加,超过单独接触途径所预期的风险。