Georgopoulou Anastasia N, Raptopoulou Catherine P, Psycharis Vassilis, Ballesteros Rafael, Abarca Belén, Boudalis Athanassios K
Institute of Materials Science, NCSR Demokritos, 153 10 Aghia Paraskevi Attikis, Greece.
Inorg Chem. 2009 Apr 6;48(7):3167-76. doi: 10.1021/ic900115c.
Reaction of copper(II) perchlorate with di-2,6-(2-pyridylcarbonyl)pyridine (pyCOpyCOpy, dpcp) in the presence of sodium azide yields complex Cu(4)(N(3))(2){pyC(OMe)(O)pyC(OMe)(O)py}(2)(MeOH)(2) x 2 MeOH (1 x 2 MeOH), which crystallizes in the monoclinic P2(1)/c space group. Similar reaction of cobalt(II) nitrate yields complex [Co(4)(N(3))(2)(NO(3))(2){pyC(OMe)(O)pyC(OMe)(O)py}(2)] x 0.5 MeOH (2 x 0.5 MeOH) which crystallizes in the monoclinic I2/m space group. Reaction of nickel(II) perchlorate yields complex [Ni(6)(CO(3))(N(3))(6){pyCOpyC(O)(OMe)py}(3)(MeOH)(2)(H(2)O)]Ni(6)(CO(3))(N(3))(6){pyCOpyC(O)(OMe)py}(3) (MeOH)(3)(2) x 1.8 MeOH (3 x 1.8 MeOH), which crystallizes in the triclinic P1 space group, as a mixed salt of two similar Ni(II)(6) cations, differing only in one terminally coordinated solvate molecule. The cation of 1 consists of four Cu(II) ions in a rhombic topology, while complex 2 consists of four Co(II) ions in a defective double cubane topology. Each of the two cations in 3 contains six Ni(II) ions in a cyclic topology, adopting a chair conformation. In 1 and 2 the ligand has undergone complete methanolysis and full deprotonation, yielding its dianionic bis-gem-diol form. In 3 it has undergone only partial methanolysis. All complexes exhibit ferromagnetic intramolecular interactions. Ferromagnetism in 1 is caused by the structural constraints imposed by the {pyC(OMe)(O)pyC(OMe)(O)py}(2-) ligand on the Cu(II) ions, while in the case of 2 and 3 it is the result of the combined effect of the end-on azido and alkoxo bridges of dpcp, which form M-N(azido)-M and M-O(alkoxo)-M angles between 90-105 degrees. The magnetic susceptibility data of 1 and 3 were analyzed with appropriate spin Hamiltonian models (H =- 2J(ij)S(i)S(j) formalism). For 1, a solution considering J = +26.8 cm(-1) along the periphery of the rhombus was found. In 3 it was found that alternating exchange couplings of J = +6.1 cm(-1) and J' = +27 cm(-1) were operative along the periphery of the ring.
在叠氮化钠存在的情况下,高氯酸铜(II)与2,6 - 二(2 - 吡啶甲酰基)吡啶(pyCOpyCOpy,dpcp)反应生成配合物Cu₄(N₃)₂{pyC(OMe)(O)pyC(OMe)(O)py}₂(MeOH)₂·2MeOH (1·2MeOH),其在单斜P2(1)/c空间群中结晶。硝酸钴(II)的类似反应生成配合物[Co₄(N₃)₂(NO₃)₂{pyC(OMe)(O)pyC(OMe)(O)py}₂]·0.5MeOH (2·0.5MeOH),其在单斜I2/m空间群中结晶。高氯酸镍(II)的反应生成配合物[Ni₆(CO₃)(N₃)₆{pyCOpyC(O)(OMe)py}₃(MeOH)₂(H₂O)]Ni₆(CO₃)(N₃)₆{pyCOpyC(O)(OMe)py}₃(MeOH)₃₂·1.8MeOH (3·1.8MeOH),其在三斜P1空间群中结晶,是两种相似的Ni(II)₆阳离子的混合盐,仅在一个末端配位溶剂分子上有所不同。1的阳离子由四个呈菱形拓扑结构的Cu(II)离子组成,而配合物2由四个呈缺陷双立方烷拓扑结构的Co(II)离子组成。3中的两个阳离子各自包含六个呈环状拓扑结构的Ni(II)离子,呈椅式构象。在1和2中,配体发生了完全的甲醇解和完全去质子化,生成其二阴离子双偕二醇形式。在3中它仅发生了部分甲醇解。所有配合物都表现出铁磁分子内相互作用。1中的铁磁性是由{pyC(OMe)(O)pyC(OMe)(O)py}²⁻配体对Cu(II)离子施加的结构限制引起的,而在2和3的情况下,这是dpcp的端基叠氮基和烷氧基桥的综合作用的结果,它们形成的M - N(叠氮基)-M和M - O(烷氧基)-M角度在90 - 105度之间。使用适当的自旋哈密顿模型(H = - 2J(ij)S(i)S(j)形式)对1和3的磁化率数据进行了分析。对于1,发现沿菱形周边J = +26.8 cm⁻¹的解。在3中发现沿环周边J = +6.1 cm⁻¹和J' = +27 cm⁻¹的交替交换耦合起作用。