Suppr超能文献

腺苷A(1)受体决定早期链脲佐菌素诱导的糖尿病中的肾小球高滤过和盐反常现象。

Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus.

作者信息

Vallon Volker, Schroth Jana, Satriano Joseph, Blantz Roland C, Thomson Scott C, Rieg Timo

机构信息

Department of Medicine, University of California San Diego, San Diego, Calif., USA.

出版信息

Nephron Physiol. 2009;111(3):p30-8. doi: 10.1159/000208211. Epub 2009 Mar 10.

Abstract

BACKGROUND

In early type 1 diabetes mellitus, changes in proximal reabsorption influence glomerular filtration rate (GFR) through tubuloglomerular feedback (TGF). Due to TGF, a primary increase in proximal reabsorption causes early diabetic hyperfiltration, while a heightened sensitivity of the proximal tubule to dietary salt leads to the so-called salt paradox, where a change in dietary salt causes a reciprocal change in GFR ('tubulocentric principle'). Here, experiments were performed in adenosine A(1) receptor knockout mice (A(1)R-/-), which lack an immediate TGF response, to determine whether A(1)Rs are essential for early diabetic hyperfiltration and the salt paradox.

METHODS

GFR was measured by inulin disappearance in conscious A(1)R-/- and wild-type (WT) mice after 4 weeks of streptozotocin diabetes on a control NaCl diet (1%), and measurements were repeated after 6 days of equilibration on a low-NaCl (0.1%) or a high-NaCl (4%) diet.

RESULTS

A(1)R-/- and WT were similar with respect to blood glucose, dietary intakes and body weight changes on a given diet. Diabetic hyperfiltration occurred in WT, but was blunted in A(1)R-/-. A reciprocal relationship between GFR and dietary salt was found in WT diabetics, but not A(1)R-/- diabetics or nondiabetics of either strain.

CONCLUSION

A(1)Rs determine glomerular hyperfiltration and the salt paradox in early diabetes, which is consistent with the tubulocentric principle.

摘要

背景

在1型糖尿病早期,近端重吸收的变化通过肾小管-肾小球反馈(TGF)影响肾小球滤过率(GFR)。由于TGF,近端重吸收的原发性增加会导致早期糖尿病性高滤过,而近端小管对饮食中盐的敏感性增加会导致所谓的盐悖论,即饮食中盐的变化会导致GFR发生相反的变化(“以肾小管为中心的原则”)。在此,我们对缺乏即时TGF反应的腺苷A(1)受体敲除小鼠(A(1)R-/-)进行了实验,以确定A(1)Rs对早期糖尿病性高滤过和盐悖论是否至关重要。

方法

通过测量清醒的A(1)R-/-和野生型(WT)小鼠在链脲佐菌素诱导糖尿病4周后,以对照NaCl饮食(1%)时菊粉的清除率来测定GFR,并在低NaCl(0.1%)或高NaCl(4%)饮食平衡6天后重复测量。

结果

在给定饮食条件下,A(1)R-/-和WT小鼠在血糖、饮食摄入量和体重变化方面相似。WT小鼠出现糖尿病性高滤过,但在A(1)R-/-小鼠中减弱。在WT糖尿病小鼠中发现GFR与饮食中盐之间存在反比关系,但在A(1)R-/-糖尿病小鼠或两种品系的非糖尿病小鼠中未发现。

结论

A(1)Rs决定早期糖尿病中的肾小球高滤过和盐悖论,这与以肾小管为中心的原则一致。

相似文献

2
4
Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt.
Am J Physiol Renal Physiol. 2008 Oct;295(4):F995-F1002. doi: 10.1152/ajprenal.00491.2007. Epub 2008 Jun 18.
6
Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes.
Am J Physiol Regul Integr Comp Physiol. 2009 Jun;296(6):R1761-70. doi: 10.1152/ajpregu.90731.2008. Epub 2009 Apr 1.
7
Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F761-F771. doi: 10.1152/ajprenal.00552.2020. Epub 2021 Mar 1.
8
The salt paradox of the early diabetic kidney is independent of renal innervation.
Kidney Blood Press Res. 2003;26(5-6):344-50. doi: 10.1159/000073941.

引用本文的文献

1
Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic Kidney Disease and beyond.
Glomerular Dis. 2025 Jan 23;5(1):119-132. doi: 10.1159/000543685. eCollection 2025 Jan-Dec.
2
Modern Challenges in Type 2 Diabetes: Balancing New Medications with Multifactorial Care.
Biomedicines. 2024 Sep 7;12(9):2039. doi: 10.3390/biomedicines12092039.
4
Update on Pathogenesis of Glomerular Hyperfiltration in Early Diabetic Kidney Disease.
Front Endocrinol (Lausanne). 2022 May 19;13:872918. doi: 10.3389/fendo.2022.872918. eCollection 2022.
5
An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors.
Int J Mol Sci. 2022 Mar 26;23(7):3651. doi: 10.3390/ijms23073651.
6
Mitochondria in Diabetic Kidney Disease.
Cells. 2021 Oct 29;10(11):2945. doi: 10.3390/cells10112945.
7
Sodium-Glucose Cotransporter 2 Inhibitors and the Kidney.
Diabetes Spectr. 2021 Aug;34(3):225-234. doi: 10.2337/ds20-0071. Epub 2021 Aug 18.
8
Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F761-F771. doi: 10.1152/ajprenal.00552.2020. Epub 2021 Mar 1.
9
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors.
Nat Rev Nephrol. 2021 May;17(5):319-334. doi: 10.1038/s41581-021-00393-8. Epub 2021 Feb 5.
10
A role for tubular Na/H exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin.
Am J Physiol Renal Physiol. 2020 Oct 1;319(4):F712-F728. doi: 10.1152/ajprenal.00264.2020. Epub 2020 Sep 7.

本文引用的文献

1
Adenosine A1 antagonists and the cardiorenal syndrome.
Curr Heart Fail Rep. 2008 Jun;5(2):105-9. doi: 10.1007/s11897-008-0017-x.
2
Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis.
J Am Soc Nephrol. 2008 Dec;19(12):2272-5. doi: 10.1681/ASN.2007121326. Epub 2008 Mar 5.
3
Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury.
J Am Soc Nephrol. 2008 Apr;19(4):722-30. doi: 10.1681/ASN.2007060721. Epub 2008 Feb 6.
4
Adenosine and kidney function: potential implications in patients with heart failure.
Eur J Heart Fail. 2008 Feb;10(2):176-87. doi: 10.1016/j.ejheart.2008.01.010. Epub 2008 Feb 1.
5
Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A1 receptors.
Am J Physiol Renal Physiol. 2008 Mar;294(3):F638-44. doi: 10.1152/ajprenal.00344.2007. Epub 2008 Jan 16.
7
9
Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite.
Eur J Pharmacol. 2007 Jan 26;555(2-3):174-7. doi: 10.1016/j.ejphar.2006.10.039. Epub 2006 Oct 25.
10
Adenosine and kidney function.
Physiol Rev. 2006 Jul;86(3):901-40. doi: 10.1152/physrev.00031.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验