Yoon Chunhong H, Bödvarsson Bjarni, Klim Søren, Mørkebjerg Martin, Mortensen Stig, Chen James, Maclaren Julian R, Luther Pradeep K, Squire John M, Bones Philip J, Millane R P
Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
IEEE Trans Image Process. 2009 Apr;18(4):831-9. doi: 10.1109/TIP.2008.2011379.
An automated image analysis system for determining myosin filament azimuthal rotations, or orientations, in electron micrographs of muscle cross sections is described. The micrographs of thin sections intersect the myosin filaments which lie on a triangular lattice. The myosin filament profiles are variable and noisy, and the images exhibit a variable contrast and background. Filament positions are determined by filtering with a point spread function that incorporates the local symmetry of the lattice. Filament orientations are determined by correlation with a template that incorporates the salient filament characteristics, and the orientations are classified using a Gaussian mixture model. The precision of the technique is assessed by application to a variety of micrographs and comparison with manual classification of the orientations. The system provides a convenient, robust, and rapid means of analysing micrographs containing many filaments to study the distribution of filament orientations.
描述了一种用于确定肌肉横截面电子显微照片中肌球蛋白丝方位旋转或取向的自动图像分析系统。薄切片的显微照片与位于三角形晶格上的肌球蛋白丝相交。肌球蛋白丝的轮廓是可变且有噪声的,并且图像呈现出可变的对比度和背景。通过使用结合晶格局部对称性的点扩散函数进行滤波来确定丝的位置。通过与结合丝显著特征的模板进行相关性分析来确定丝的取向,并使用高斯混合模型对取向进行分类。通过将该技术应用于各种显微照片并与取向的手动分类进行比较来评估该技术的精度。该系统提供了一种方便、稳健且快速的方法来分析包含许多丝的显微照片,以研究丝取向的分布。