Suppr超能文献

高维组合催化数据的可视化

Visualization of high-dimensional combinatorial catalysis data.

作者信息

Suh Changwon, Sieg Simone C, Heying Matthew J, Oliver James H, Maier Wilhelm F, Rajan Krishna

机构信息

Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA.

出版信息

J Comb Chem. 2009 May-Jun;11(3):385-92. doi: 10.1021/cc800194j.

Abstract

The role of various techniques for visualization of high-dimensional data is demonstrated in the context of combinatorial high-throughput experimentation (HTE). Applying visualization tools, we identify which constituents of catalysts are associated with final products in a huge combinatorially generated data set of heterogeneous catalysts, and catalytic activity regions are identified with respect to pentanary composition spreads of catalysts. A radial visualization scheme directly visualizes pentanary composition spreads in two-dimensional (2D) space and catalytic activity of a final product by combining high-throughput results from five slate libraries. A glyph plot provides many possibilities for visualizing high-dimensional data with interactive tools. For catalyst discovery and lead optimization, this work demonstrates how large multidimensional catalysis data sets are visualized in terms of quantitative composition activity relationships (QCAR) to effectively identify the relevant key role of compositions (i.e., lead compositions) of catalysts.

摘要

在组合高通量实验(HTE)的背景下,展示了各种高维数据可视化技术的作用。通过应用可视化工具,我们在一个由组合生成的庞大非均相催化剂数据集中,确定了催化剂的哪些成分与最终产物相关,并根据催化剂的五元组成分布确定了催化活性区域。一种径向可视化方案通过结合来自五个板岩库的高通量结果,直接在二维(2D)空间中可视化五元组成分布以及最终产物的催化活性。象形图为使用交互式工具可视化高维数据提供了多种可能性。对于催化剂发现和先导优化,这项工作展示了如何根据定量组成活性关系(QCAR)来可视化大型多维催化数据集,以有效地识别催化剂组成(即先导组成)的相关关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验