Domke Justin, Aloimonos Yiannis
Center for Automation Research, University of Maryland, College Park, MD 20742.
IEEE Trans Pattern Anal Mach Intell. 2009 May;31(5):811-23. doi: 10.1109/TPAMI.2008.133.
Since cameras blur the incoming light during measurement, different images of the same surface do not contain the same information about that surface. Thus, in general, corresponding points in multiple views of a scene have different image intensities. While multiple-view geometry constrains the locations of corresponding points, it does not give relationships between the signals at corresponding locations. This paper offers an elementary treatment of these relationships. We first develop the notion of "ideal" and "real" images, corresponding to, respectively, the raw incoming light and the measured signal. This framework separates the filtering and geometric aspects of imaging. We then consider how to synthesize one view of a surface from another; if the transformation between the two views is affine, it emerges that this is possible if and only if the singular values of the affine matrix are positive. Next, we consider how to combine the information in several views of a surface into a single output image. By developing a new tool called "frequency segmentation," we show how this can be done despite not knowing the blurring kernel.
由于相机在测量过程中会使入射光模糊,同一表面的不同图像并不包含关于该表面的相同信息。因此,一般来说,场景多视图中的对应点具有不同的图像强度。虽然多视图几何约束了对应点的位置,但它并没有给出对应位置处信号之间的关系。本文对这些关系进行了初步探讨。我们首先分别对应于原始入射光和测量信号,提出了“理想”图像和“真实”图像的概念。这个框架将成像的滤波和几何方面分离开来。然后我们考虑如何从另一个表面视图合成一个表面视图;如果两个视图之间的变换是仿射变换,那么可以得出,当且仅当仿射矩阵的奇异值为正时,这才是可能的。接下来,我们考虑如何将一个表面的多个视图中的信息组合成一个单一的输出图像。通过开发一种名为“频率分割”的新工具,我们展示了如何在不知道模糊核的情况下做到这一点。