Suppr超能文献

用于模拟卵巢周期和孕期子宫血管系统阻抗的传输线模型。

Transmission line models to simulate the impedance of the uterine vasculature during the ovarian cycle and pregnancy.

作者信息

Zhu Yanmei, Sprague Benjamin J, Phernetton Terrance M, Magness Ronald R, Chesler Naomi C

机构信息

Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA.

出版信息

Eur J Obstet Gynecol Reprod Biol. 2009 May;144 Suppl 1(Suppl 1):S184-91. doi: 10.1016/j.ejogrb.2009.02.030. Epub 2009 Mar 20.

Abstract

OBJECTIVES

Changes in uterine vascular impedance may yield diagnostic insight into physiological and pathological changes in uterine vascular resistance and compliance during the ovarian cycle and pregnancy. Herein, our objectives were to develop models to simulate uterine vascular impedance in order to gain insight into the vascular size and stiffness changes that occur during ovarian cycling and pregnancy.

STUDY DESIGN

Two electrical analogue transmission line models were developed and evaluated based on goodness-of-fit to experimental impedance measurements, which were obtained in nonpregnant luteal and follicular phase (NP-L and NP-F) and pregnant (P) ewes (n=4-8 per group). First, an anatomically based, multi-segment, symmetric, branching transmission line model was developed. Parameter values were calculated based on experimental measurements of size and stiffness in the first three generations of the uterine arterial tree for NP-L, NP-F and P ewes. Then, a single segment transmission line model was developed and effective parameter values were optimized to best-fit the measured impedances.

RESULTS

The anatomically based multi-segment model did not yield the expected good agreement with the experimental data (R(2)<0.5 for all groups). In contrast, the impedance spectra predicted by the single segment model agreed very well with experimental data (R(2)=0.93, 0.82, and 0.84 for NP-L, NP-F and P, respectively; p<0.0001, all groups). Furthermore, the changes in the best-fit model parameters for NP-F and P compared to the NP-L were consistent with the prior literature on the effects of the ovarian cycle and pregnancy on vascular resistance and compliance. In particular, compared to NP-L, NP-F had decreased longitudinal and terminal resistance with a modest increase in compliance whereas pregnancy caused more dramatic drops in longitudinal and terminal resistance and a significant increase in compliance.

CONCLUSIONS

The single segment transmission line model is a useful tool to examine changes in vascular structure and function that occur during the ovarian cycle and pregnancy.

摘要

目的

子宫血管阻抗的变化可能有助于深入了解卵巢周期和孕期子宫血管阻力及顺应性的生理和病理变化。在此,我们的目的是建立模型来模拟子宫血管阻抗,以便深入了解卵巢周期和孕期发生的血管大小及硬度变化。

研究设计

基于对实验阻抗测量值的拟合优度,开发并评估了两个电模拟传输线模型,这些测量值是在非孕黄体期和卵泡期(NP-L和NP-F)以及孕羊(P)(每组n = 4 - 8)中获得的。首先,开发了一个基于解剖结构的多段对称分支传输线模型。根据NP-L、NP-F和孕羊子宫动脉树前三代大小和硬度的实验测量值计算参数值。然后,开发了一个单段传输线模型,并优化有效参数值以最佳拟合测量的阻抗。

结果

基于解剖结构的多段模型与实验数据未达成预期的良好一致性(所有组的R²<0.5)。相比之下,单段模型预测的阻抗谱与实验数据非常吻合(NP-L、NP-F和P组的R²分别为0.93、0.82和0.84;所有组p<0.0001)。此外,与NP-L相比,NP-F和P组最佳拟合模型参数的变化与先前关于卵巢周期和孕期对血管阻力及顺应性影响的文献一致。特别是,与NP-L相比,NP-F的纵向和末端阻力降低,顺应性略有增加;而孕期导致纵向和末端阻力大幅下降,顺应性显著增加。

结论

单段传输线模型是研究卵巢周期和孕期血管结构和功能变化的有用工具。

相似文献

1
Transmission line models to simulate the impedance of the uterine vasculature during the ovarian cycle and pregnancy.
Eur J Obstet Gynecol Reprod Biol. 2009 May;144 Suppl 1(Suppl 1):S184-91. doi: 10.1016/j.ejogrb.2009.02.030. Epub 2009 Mar 20.
2
The effects of the ovarian cycle and pregnancy on uterine vascular impedance and uterine artery mechanics.
Eur J Obstet Gynecol Reprod Biol. 2009 May;144 Suppl 1(Suppl 1):S170-8. doi: 10.1016/j.ejogrb.2009.02.041. Epub 2009 Mar 17.
5
Effect of endothelin-1 on the uterine vasculature of the pregnant and estrogen-treated nonpregnant sheep.
Am J Obstet Gynecol. 1992 Dec;167(6):1642-50. doi: 10.1016/0002-9378(92)91755-y.
7
Pregnancy induces expression of cPLA2 in ovine uterine artery but not systemic artery endothelium.
J Soc Gynecol Investig. 1999 Nov-Dec;6(6):301-6. doi: 10.1016/s1071-5576(99)00038-6.
8
Ovine uterine artery hydrogen sulfide biosynthesis in vivo: effects of ovarian cycle and pregnancy†.
Biol Reprod. 2019 Jun 1;100(6):1630-1636. doi: 10.1093/biolre/ioz027.
10
Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep.
J Physiol. 2005 May 15;565(Pt 1):71-83. doi: 10.1113/jphysiol.2005.086439. Epub 2005 Mar 17.

本文引用的文献

1
The effects of the ovarian cycle and pregnancy on uterine vascular impedance and uterine artery mechanics.
Eur J Obstet Gynecol Reprod Biol. 2009 May;144 Suppl 1(Suppl 1):S170-8. doi: 10.1016/j.ejogrb.2009.02.041. Epub 2009 Mar 17.
2
The arterial Windkessel.
Med Biol Eng Comput. 2009 Feb;47(2):131-41. doi: 10.1007/s11517-008-0359-2. Epub 2008 Jun 10.
5
Abnormal arterial flows by a distributed model of the fetal circulation.
Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1222-33. doi: 10.1152/ajpregu.00212.2006. Epub 2006 Jun 15.
6
Arterial stiffness in preeclamptic and chronic hypertensive pregnancies.
Eur J Obstet Gynecol Reprod Biol. 2006 Sep-Oct;128(1-2):180-6. doi: 10.1016/j.ejogrb.2005.12.026. Epub 2006 Mar 10.
7
Analog studies of the human systemic arterial tree.
J Biomech. 1969 May;2(2):121-43. doi: 10.1016/0021-9290(69)90024-4.
8
Pulse wave reflection in currently and previously preeclamptic women.
Hypertens Pregnancy. 2005;24(2):171-80. doi: 10.1081/PRG-200059871.
9
Uterine blood flow responses to ICI 182 780 in ovariectomized oestradiol-17beta-treated, intact follicular and pregnant sheep.
J Physiol. 2005 May 15;565(Pt 1):71-83. doi: 10.1113/jphysiol.2005.086439. Epub 2005 Mar 17.
10
The role of uterine artery Doppler in predicting adverse pregnancy outcome.
Best Pract Res Clin Obstet Gynaecol. 2004 Jun;18(3):383-96. doi: 10.1016/j.bpobgyn.2004.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验