Chelikani P K, Ambrose D J, Keisler D H, Kennelly J J
Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada, T2N 4N1.
J Dairy Sci. 2009 Apr;92(4):1430-41. doi: 10.3168/jds.2008-1385.
The hormonal and metabolic signals that communicate the level of body energy reserves to the reproductive-mammary axis remain undefined in dairy cattle; consequently, our hypothesis was that leptin may fulfill this role. Our objectives were to determine the effects of diets differing in energy and protein density on dry matter intake (DMI), growth traits [body weight (BW), body condition score (BCS), back-fat (BF) thickness], and temporal changes in plasma concentrations of leptin, insulin, growth hormone (GH), insulin-like growth factor-1 (IGF-1), glucose, and nonesterified fatty acids (NEFA) in dairy heifers during the pre- and postpubertal periods. In period 1, heifers were randomly allotted (n = 10/diet) at 103 kg of BW to diets for a predicted average daily gain of 1.10 (high, H), 0.80 (medium, M), or 0.50 kg/d (low, L). Five heifers in each of the H and L groups were further studied during period 2, either at 12 mo of age (HA, LA) or at 330 kg of BW (HW, LW). The data provide evidence that 1) DMI (18%), BW (17%), and BF (5%) together explained 40% of the variation in plasma leptin concentrations (r(2) = 0.396); 2) unlike the acute postprandial increase in plasma insulin as a result of increased nutrient density (H 1.42 +/- 0.09, M 1.02 +/- 0.09, L 0.68 +/- 0.11 ng/mL), plasma leptin concentrations did not respond acutely with a distinct postprandial profile; 3) although plasma leptin concentrations increased with age, leptin at puberty did not differ among treatment groups (H 5.63 +/- 2.48, M 4.28 +/- 0.55, L 4.12 +/- 0.72 ng/mL) and there was no evidence of an abrupt transition in prepubertal plasma leptin concentrations; 4) plasma leptin concentrations may not be a critical trigger for puberty in rapidly growing heifers, but are apparently essential for puberty in heifers with normal or restricted growth rates; and 5) plasma concentrations of insulin (H 0.59 +/- 0.07, M 0.43 +/- 0.09, L 0.30 +/- 0.09 ng/mL), IGF-1 (H 151.08 +/- 16.47, L 82.51 +/- 17.47 ng/mL), and glucose (H 81.35 +/- 3.39, M 73.59 +/- 2.34, L 68.25 +/- 3.39 mg/dL) reflected nutrient density, whereas GH (H 1.82 +/- 0.23, L 5.87 +/- 0.45 ng/mL) and NEFA (H 209.54 +/- 50.83, L 234.93 +/- 48.97 microM) were inversely related to the plane of nutrition. Collectively, these data suggest that plasma concentrations of leptin may play a role in long-term regulation of energy reserves and puberty in growing Holstein heifers.
在奶牛中,将机体能量储备水平传递至生殖 - 乳腺轴的激素和代谢信号仍不明确;因此,我们的假设是瘦素可能发挥这一作用。我们的目标是确定能量和蛋白质密度不同的日粮对干物质采食量(DMI)、生长性状[体重(BW)、体况评分(BCS)、背膘(BF)厚度]以及青春期前后奶牛血浆中瘦素、胰岛素、生长激素(GH)、胰岛素样生长因子 -1(IGF -1)、葡萄糖和非酯化脂肪酸(NEFA)浓度的时间变化的影响。在第1阶段,体重103 kg的小母牛被随机分配(每组10头)到日粮组,预期平均日增重分别为1.10(高,H)、0.80(中,M)或0.50 kg/d(低,L)。H组和L组各有5头小母牛在第2阶段进一步研究,分别在12月龄(HA,LA)或体重330 kg时(HW,LW)。数据表明:1)DMI(18%)、BW(17%)和BF(5%)共同解释了血浆瘦素浓度变化的40%(r² = 0.396);2)与因营养密度增加导致的血浆胰岛素餐后急性升高不同(H组1.42±0.09、M组1.02±0.09、L组0.68±0.11 ng/mL),血浆瘦素浓度并无明显的餐后急性反应;3)尽管血浆瘦素浓度随年龄增加,但青春期时各处理组的瘦素水平并无差异(H组5.63±2.48、M组4.28±0.55、L组4.12±0.72 ng/mL),且没有证据表明青春期前血浆瘦素浓度会突然转变;4)血浆瘦素浓度可能不是快速生长小母牛青春期的关键触发因素,但对于生长速度正常或受限的小母牛的青春期显然至关重要;5)血浆胰岛素(H组0.59±0.07、M组0.43±0.09、L组0.30±0.09 ng/mL)、IGF -1(H组151.08±16.47、L组82.51±17.47 ng/mL)和葡萄糖(H组81.35±3.39、M组73.59±2.34、L组68.25±3.39 mg/dL)反映了营养密度,而GH(H组1.82±0.23、L组5.87±0.45 ng/mL)和NEFA(H组209.54±50.83、L组234.93±48.97 μmol/L)与营养水平呈负相关。总体而言,这些数据表明血浆瘦素浓度可能在生长中的荷斯坦小母牛能量储备和青春期的长期调节中发挥作用。