Narayanan Arjun, Sellers Benjamin D, Jacobson Matthew P
Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.
J Mol Biol. 2009 May 22;388(5):941-53. doi: 10.1016/j.jmb.2009.03.043. Epub 2009 Mar 24.
Diversity in antibody structure is crucial to the ability of the adaptive immune system to recognize the tremendously diverse set of potential antigens. The diversity in structure is most apparent in the six hypervariable loops of the complementarity-determining regions. However, given that these loops occur at the interface of the heavy- and light-chain variable domains and form the antigen-binding site, the relative orientation of the heavy- and light-chain variable domains can create another source of structural diversity leading to changes in antigen binding. Here, we first reexamine the diversity of V(L):V(H) orientations in existing antibody crystal structures using 153 nonredundant sequences, demonstrating that the variation in V(L):V(H) orientation is greater than that expected from effects of crystal packing, antigen binding, or the presence of antibody constant regions and increases, on average, as sequence similarity decreases for residues in the interface between the domains. We developed a tool for predicting the relative orientations of the heavy- and light-chain variable domains using side-chain rotamer sampling in the interface and molecular-mechanics-based energy calculations. When using variable domain backbones from the crystal structures, the predicted orientation is very close (<1 A RMSD) to the crystallographically observed orientation in most cases, confirming that the V(L):V(H) orientation is determined by the antibody sequence and suggesting an approach to predicting the relative orientation of the variable domains when building homology models of antibodies. When applied to antibody homology models generated from templates with 55-75% sequence identity, we predict the V(L):V(H) orientation of 20 antibodies with an average/median RMSD of 2.1/1.6 A to the crystal structures.
抗体结构的多样性对于适应性免疫系统识别大量潜在抗原的能力至关重要。结构多样性在互补决定区的六个高变环中最为明显。然而,鉴于这些环出现在重链和轻链可变结构域的界面处并形成抗原结合位点,重链和轻链可变结构域的相对取向可产生另一种结构多样性来源,导致抗原结合发生变化。在这里,我们首先使用153个非冗余序列重新审视现有抗体晶体结构中V(L):V(H)取向的多样性,证明V(L):V(H)取向的变化大于晶体堆积、抗原结合或抗体恒定区存在所预期的变化,并且平均而言,随着结构域之间界面处残基序列相似性的降低而增加。我们开发了一种工具,通过在界面处进行侧链旋转异构体采样和基于分子力学的能量计算来预测重链和轻链可变结构域的相对取向。当使用晶体结构中的可变结构域骨架时,在大多数情况下预测的取向与晶体学观察到的取向非常接近(<1 Å RMSD),证实V(L):V(H)取向由抗体序列决定,并提出了一种在构建抗体同源模型时预测可变结构域相对取向的方法。当应用于由序列同一性为55-75%的模板生成的抗体同源模型时,我们预测了20种抗体的V(L):V(H)取向,与晶体结构的平均/中值RMSD为2.1/1.6 Å。