Vajda Sandor, Kozakov Dima
Biomolecular Engineering Research Center, Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA.
Curr Opin Struct Biol. 2009 Apr;19(2):164-70. doi: 10.1016/j.sbi.2009.02.008. Epub 2009 Mar 25.
The analysis of results from Critical Assessment of Predicted Interactions (CAPRI), the first community-wide experiment devoted to protein docking, shows that all successful methods consist of multiple stages. The methods belong to three classes: global methods based on fast Fourier transforms (FFTs) or geometric matching, medium-range Monte Carlo methods, and the restraint-guided High Ambiguity Driven biomolecular DOCKing (HADDOCK) program. Although these classes of methods require very different amounts of information in addition to the structures of component proteins, they all share the same four computational steps: firstly, simplified and/or rigid body search; secondly, selecting the region(s) of interest; thirdly, refinement of docked structures; and fourthly, selecting the best models. Although each method is optimal for a specific class of docking problems, combining computational steps from different methods can improve the reliability and accuracy of results.
蛋白质对接预测相互作用关键评估(CAPRI)是首个全社区范围的蛋白质对接实验,其结果分析表明,所有成功的方法都包含多个阶段。这些方法分为三类:基于快速傅里叶变换(FFT)或几何匹配的全局方法、中程蒙特卡罗方法以及约束引导的高模糊度驱动生物分子对接(HADDOCK)程序。尽管这些方法除了组成蛋白质的结构外还需要非常不同数量的信息,但它们都共享相同的四个计算步骤:首先,进行简化和/或刚体搜索;其次,选择感兴趣的区域;第三,对接结构的优化;第四,选择最佳模型。虽然每种方法对于特定类别的对接问题是最优的,但结合不同方法的计算步骤可以提高结果的可靠性和准确性。