Attaran Elham, Zeier Tatiana E, Griebel Thomas, Zeier Jürgen
Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany.
Plant Cell. 2009 Mar;21(3):954-71. doi: 10.1105/tpc.108.063164. Epub 2009 Mar 27.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.
系统获得性抗性(SAR)是植物在受到局部叶片微生物接种后产生的,可使整株植物对后续病原体感染更具抗性。SAR的产生需要在未感染的植物部分积累水杨酸(SA),而水杨酸甲酯(MeSA)和茉莉酸(JA)被认为在SAR从接种叶片到远处叶片的长距离信号传导过程中起关键作用。在此,我们探讨了MeSA和JA在拟南芥SAR发育过程中的重要性。在用诱导SAR的细菌病原体丁香假单胞菌接种的叶片中,MeSA的产量会增加;然而,大部分MeSA会释放到大气中,只有少量会保留下来。我们发现,在几个拟南芥防御突变体中,产生MeSA的能力和建立SAR的能力并不一致。病原体响应性SA甲基转移酶基因表达有缺陷的T-DNA插入系完全没有诱导产生MeSA,但在局部接种丁香假单胞菌后,其系统性SA水平会增加并产生SAR。因此,MeSA对于拟南芥的SAR是可有可无的,远处叶片中的SA积累似乎是通过异分支酸合酶从头合成发生的。我们发现,丁香假单胞菌诱导的MeSA产生依赖于JA途径,但SAR并不需要JA生物合成或下游信号传导。在亲和互作中,MeSA的产生依赖于丁香假单胞菌的毒力因子冠菌素,这表明植物病原体利用冠菌素介导的MeSA从叶片挥发来减弱基于SA的防御途径。