Gupta Shalabh, León-Escamilla E Alejandro, Wang Fei, Miller Gordon J, Corbett John D
Ames Laboratory-DOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Inorg Chem. 2009 May 18;48(10):4362-71. doi: 10.1021/ic802464u.
The syntheses and distributions of binary R(5)Pn(3) phases among the hexagonal Mn(5)Si(3) (M), and the very similar orthorhombic beta-Yb(5)Sb(3) (Y) and Y(5)Bi(3) (YB) structure types have been studied for R = Y, Gd-Lu and Pn = Sb, Bi. Literature reports of M and YB-type structure distributions among R(5)Pn(3) phases, R = Y, Gd-Ho, are generally confirmed. The reported M-type Er(5)Sb(3) could not be reproduced. Alternate stabilization of Y-type structures by interstitials H or F has been disproved for these nominally trivalent metal pnictides. Single crystal structures are reported for (a) the low temperature YB form of Er(5)Sb(3) (Pnma, a = 7.9646(9) A, b = 9.176(1) A, c = 11.662(1) A), (b) the YB- and high temperature Y-types of Tm(5)Sb(3) (both Pnma, a = 7.9262(5), 11.6034(5) A, b = 9.1375(6), 9.1077(4) A, c = 11.6013(7), 7.9841(4) A, respectively), and (c) the YB structure of Lu(5)Sb(3), a = 7.8847(4) A, b = 9.0770(5) A, c = 11.5055(6) A. Reversible, temperature-driven phase transitions (beta-Yb(5)Sb(3) left arrow over right arrow Y(5)Bi(3) types) for the former Er(5)Sb(3) and Tm(5)Sb(3) around 1100 degrees C and the means of quenching the high temperature Y form, have been esstablished. According to their magnetic susceptibilities, YB-types of Er(5)Sb(3) and Tm(5)Sb(3) contain trivalent cations. Tight-binding linear muffin-tin-orbital method within the atomic sphere approximation (TB-LMTO-ASA) calculations for the two structures of Tm(5)Sb(3) reveal generally similar electronic structures but with subtle Tm-Tm differences supporting their relative stabilities. The ambient temperature YB-Tm(5)Sb(3) shows a deep pseudogap at E(F), approaching that of a closed shell electronic state. Short R-R bonds (3.25-3.29 A) contribute markedly to the structural stabilities of both types. The Y-type structure of Tm(5)Sb(3) shows both close structural parallels to, and bonding contrasts with, the nominally isotypic, stuffed Ca(5)Bi(3)D and its analogues. Some contradictions in the literature are discussed.
研究了二元R(5)Pn(3)相在六方Mn(5)Si(3)(M)以及非常相似的正交β-Yb(5)Sb(3)(Y)和Y(5)Bi(3)(YB)结构类型中的合成与分布情况,其中R = Y、Gd-Lu,Pn = Sb、Bi。文献中关于R(5)Pn(3)相(R = Y、Gd-Ho)中M型和YB型结构分布的报道总体上得到了证实。所报道的M型Er(5)Sb(3)无法重现。对于这些名义上为三价的金属磷化物,间隙原子H或F对Y型结构的交替稳定作用已被否定。报道了以下单晶结构:(a) Er(5)Sb(3)的低温YB形式(Pnma,a = 7.9646(9) Å,b = 9.176(1) Å,c = 11.662(1) Å);(b) Tm(5)Sb(3)的YB型和高温Y型(均为Pnma,a分别为7.9262(5)、11.6034(5) Å,b分别为9.1375(6)、9.1077(4) Å,c分别为11.6013(7)、7.9841(4) Å);(c) Lu(5)Sb(3)的YB结构,a = 7.8847(4) Å,b = 9.0770(5) Å,c = 11.5055(6) Å。已确定了前体Er(5)Sb(3)和Tm(5)Sb(3)在约1100℃时的可逆温度驱动相变(β-Yb(5)Sb(3) ⇌ Y(5)Bi(3)类型)以及淬灭高温Y形式的方法。根据它们的磁化率,Er(5)Sb(3)和Tm(5)Sb(3)的YB型包含三价阳离子。在原子球近似(TB-LMTO-ASA)内的紧束缚线性 muffin-tin轨道方法对Tm(5)Sb(3)的两种结构进行的计算表明,它们的电子结构总体上相似,但Tm-Tm之间存在细微差异,这支持了它们的相对稳定性。室温下的YB-Tm(5)Sb(3)在费米能级(E(F))处显示出一个深的赝能隙,接近闭壳层电子态的能隙。短的R-R键(3.25 - 3.29 Å)对两种类型的结构稳定性都有显著贡献。Tm(5)Sb(3)的Y型结构与名义上同型的填充Ca(5)Bi(3)D及其类似物既显示出紧密的结构相似性,又存在键合差异。文中讨论了文献中的一些矛盾之处。