Decker Dima A, Galligan James J
Dept. of Biochemistry, Michigan State Univ., East Lansing, MI 48824, USA.
Am J Physiol Gastrointest Liver Physiol. 2009 Jun;296(6):G1267-76. doi: 10.1152/ajpgi.00048.2009. Epub 2009 Apr 2.
The enteric nervous system (ENS) controls gut function. P2X receptors and nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels that mediate fast synaptic excitation in the ENS. Close molecular coupling in enteric neuronal membranes contributes to a mutually inhibitory interaction between these receptors; this effect is called cross-inhibition. We studied the molecular mechanisms responsible for cross-inhibition. Whole cell patch-clamp techniques were used to measure P2X- and nAChR-mediated currents in cultured enteric neurons and HEK-293 cells. In cultured myenteric neurons, ACh (3 mM) and ATP (1 mM) coapplication evoked an inward current that was only 57 +/- 6% (P < 0.05) of the predicted current that would have occurred if the two populations of channels were activated independently. In HEK-293 cells coexpressing alpha(3)beta(4) nAChR/P2X(2) receptors, coapplication of ATP and ACh caused a current that was 58 +/- 7% of the predicted current (P < 0.05). To test the importance of P2X subunit COOH-terminal tail length on cross-inhibition, P2X(3) and P2X(4) subunits, which have shorter COOH-terminal tails, were studied. Cross-inhibition with alpha(3)beta(4) nAChRs and P2X(3) or P2X(4) subunits was similar to that occurring with P2X(2) subunits. P2X receptor or alpha(3)beta(4) nAChR desensitization did not prevent receptor cross-inhibition. These data indicate that the alpha(3)beta(4)-P2X receptor interaction is not restricted to P2X(2) subunits. In addition, active and desensitized conformations of the P2X receptor inhibit nAChR function. These molecular interactions may modulate the function of synapses that use ATP and ACh as fast synaptic transmitters in the ENS.
肠神经系统(ENS)控制肠道功能。P2X受体和烟碱型乙酰胆碱受体(nAChRs)是配体门控阳离子通道,介导ENS中的快速突触兴奋。肠神经元膜中的紧密分子偶联导致这些受体之间产生相互抑制作用;这种效应称为交叉抑制。我们研究了负责交叉抑制的分子机制。采用全细胞膜片钳技术测量培养的肠神经元和HEK-293细胞中P2X和nAChR介导的电流。在培养的肌间神经丛神经元中,共同应用乙酰胆碱(3 mM)和ATP(1 mM)诱发的内向电流仅为两种通道群体独立激活时预测电流的57±6%(P<0.05)。在共表达α(3)β(4) nAChR/P2X(2)受体的HEK-293细胞中,共同应用ATP和乙酰胆碱产生的电流为预测电流的58±7%(P<0.05)。为了测试P2X亚基COOH末端尾巴长度对交叉抑制的重要性,研究了COOH末端尾巴较短的P2X(3)和P2X(4)亚基。α(3)β(4) nAChRs与P2X(3)或P2X(4)亚基的交叉抑制与P2X(2)亚基的情况相似。P2X受体或α(3)β(4) nAChR脱敏并未阻止受体交叉抑制。这些数据表明α(3)β(4)-P2X受体相互作用并不局限于P2X(2)亚基。此外,P2X受体的活性和脱敏构象会抑制nAChR功能。这些分子相互作用可能会调节在ENS中使用ATP和乙酰胆碱作为快速突触递质的突触功能。
Am J Physiol Gastrointest Liver Physiol. 2009-6
Neurogastroenterol Motil. 2010-4-23
Eur J Neurosci. 1999-1
Eur J Pharmacol. 2013-4-6
J Physiol. 1996-11-1
Braz J Med Biol Res. 2025-1-31
Proc Natl Acad Sci U S A. 2021-10-5
Nat Rev Gastroenterol Hepatol. 2012-8-14
Front Cell Neurosci. 2011-6-22
Invest Ophthalmol Vis Sci. 2011-7-29
J Biol Chem. 2011-2-22
Neurogastroenterol Motil. 2008-10
Purinergic Signal. 2007-12-8
Auton Neurosci. 2006-12-30
Trends Pharmacol Sci. 2004-9
J Biol Chem. 2004-12-10
Annu Rev Biophys Biomol Struct. 2004