Oetjen Janina, Reinhold-Hurek Barbara
General Microbiology, Faculty of Biology and Chemistry, University Bremen, Postfach 33 04 40, D-28334 Bremen, Germany.
J Bacteriol. 2009 Jun;191(11):3726-35. doi: 10.1128/JB.01720-08. Epub 2009 Apr 3.
DraT/DraG-mediated posttranslational regulation of the nitrogenase Fe protein by ADP-ribosylation has been described for a few diazotrophic bacteria belonging to the class Alphaproteobacteria. Here we present for the first time the DraT/DraG system of a betaproteobacterium, Azoarcus sp. strain BH72, a diazotrophic grass endophyte. Its genome harbors one draT ortholog and two physically unlinked genes coding for ADP-ribosylhydrolases. Northern blot analysis revealed cotranscription of draT with two genes encoding hypothetical proteins. Furthermore, draT and draG2 were expressed under all studied conditions, whereas draG1 expression was nitrogen regulated. By using Western blot analysis of deletion mutants and nitrogenase assays in vivo, we demonstrated that DraT is required for the nitrogenase Fe protein modification but not for the physiological inactivation of nitrogenase activity. A second mechanism responsible for nitrogenase inactivation must operate in this bacterium, which is independent of DraT. Fe protein demodification was dependent mainly on DraG1, corroborating the assumption from phylogenetic analysis that DraG2 might be mostly involved in processes other than the posttranslational regulation of nitrogenase. Nitrogenase in vivo reactivation was impaired in a draG1 mutant and a mutant lacking both draG alleles after anaerobiosis shifts and subsequent adjustment to microaerobic conditions, suggesting that modified dinitrogenase reductase was inactive. Our results demonstrate that the DraT/DraG system, despite some differences, is functionally conserved in diazotrophic proteobacteria.
对于一些属于α-变形菌纲的固氮细菌,已描述了DraT/DraG介导的通过ADP-核糖基化对固氮酶铁蛋白进行的翻译后调控。在此,我们首次展示了一种β-变形菌——固氮性禾本科内生菌偶氮弧菌属菌株BH72的DraT/DraG系统。其基因组含有一个draT直系同源基因和两个编码ADP-核糖水解酶的物理上不连锁的基因。Northern印迹分析显示draT与两个编码假定蛋白的基因共转录。此外,draT和draG2在所有研究条件下均有表达,而draG1的表达受氮调控。通过对缺失突变体进行蛋白质印迹分析和体内固氮酶测定,我们证明DraT是固氮酶铁蛋白修饰所必需的,但不是固氮酶活性生理失活所必需的。负责固氮酶失活的第二种机制必定在该细菌中起作用,且独立于DraT。铁蛋白去修饰主要依赖于DraG1,这证实了系统发育分析的假设,即DraG2可能主要参与除固氮酶翻译后调控之外的其他过程。在厌氧转变并随后调整至微需氧条件后,draG1突变体和缺乏两个draG等位基因的突变体中,体内固氮酶的再激活受损,这表明修饰的双氮酶还原酶无活性。我们的结果表明,尽管存在一些差异,但DraT/DraG系统在固氮变形菌中功能保守。