Suppr超能文献

针对导致强直性肌营养不良2型的RNA的强效配体的合理且模块化设计。

Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2.

作者信息

Lee Melissa M, Pushechnikov Alexei, Disney Matthew D

机构信息

Department of Chemistry and The Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 657 Natural Sciences Complex, Buffalo, NY 14260, USA.

出版信息

ACS Chem Biol. 2009 May 15;4(5):345-55. doi: 10.1021/cb900025w.

Abstract

Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6'-N-5-hexynoate kanamycin A (1) prefers to bind 2x2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops are found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC(50) of 25 nM. This ligand has higher affinity and is more specific for binding the DM2 RNA than MBNL-1. It binds the DM2 RNA at least 30 times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6'-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable.

摘要

大多数靶向RNA的配体是通过筛选治疗靶点与配体文库成员的结合来鉴定的。构建RNA结合剂的一种潜在替代方法是利用配体倾向于结合的RNA基序信息进行合理设计。在此,我们描述了一种设计模块化组装配体的方法,该配体靶向导致2型强直性肌营养不良症(DM2)的RNA,这是一种目前无法治疗的疾病。先前的一项研究表明,6'-N-5-己炔酸卡那霉素A(1)倾向于结合2x2核苷酸、富含嘧啶的RNA内环。在导致DM2的RNA发夹结构中发现了多个这样的环。然后,将1配体模块化地展示在具有不同数量和间距的类肽支架上,以同时靶向多个内环。对模块化组装的配体进行了与一系列RNA结合以及抑制有毒的DM2 RNA-肌肉盲蛋白(MBNL-1)相互作用形成的测试。最有效的配体展示了三个1模块,每个模块由四个间隔亚单体隔开,并以25 nM的IC(50)抑制RNA-蛋白质复合物的形成。该配体具有更高的亲和力,并且与MBNL-1相比,对DM2 RNA的结合更具特异性。它与DM2 RNA的结合比相关RNA至少紧密30倍,比MBNL-1紧密15倍。展示6'-N-5-己炔酸新霉素(2)的相关对照类肽在抑制RNA-蛋白质相互作用方面的效力低100倍以上,与DM2 RNA的结合弱125倍以上。对小鼠成肌细胞系的摄取研究还表明,最有效的配体具有细胞通透性。

相似文献

5
Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1.
ACS Chem Biol. 2012 Dec 21;7(12):1984-93. doi: 10.1021/cb3001606. Epub 2012 Nov 7.
6
Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.
ACS Chem Biol. 2012 May 18;7(5):856-62. doi: 10.1021/cb200408a. Epub 2012 Mar 5.
8
Short Tandem Repeat Expansions and RNA-Mediated Pathogenesis in Myotonic Dystrophy.
Int J Mol Sci. 2019 Jul 9;20(13):3365. doi: 10.3390/ijms20133365.

引用本文的文献

1
Greening of Monocyclic N- and O‑Azole Synthesis through Sonochemistry.
ACS Omega. 2025 Jun 26;10(26):27673-27698. doi: 10.1021/acsomega.5c02214. eCollection 2025 Jul 8.
3
Fluorescence-Based Binding Characterization of Small Molecule Ligands Targeting CUG RNA Repeats.
Int J Mol Sci. 2022 Mar 19;23(6):3321. doi: 10.3390/ijms23063321.
4
Small molecule recognition of disease-relevant RNA structures.
Chem Soc Rev. 2020 Oct 5;49(19):7167-7199. doi: 10.1039/d0cs00560f.
5
A Toxic RNA Catalyzes the Cellular Synthesis of Its Own Inhibitor, Shunting It to Endogenous Decay Pathways.
Cell Chem Biol. 2020 Feb 20;27(2):223-231.e4. doi: 10.1016/j.chembiol.2020.01.003. Epub 2020 Jan 24.
7
Synthetic small-molecule RNA ligands: future prospects as therapeutic agents.
Medchemcomm. 2019 Apr 30;10(8):1242-1255. doi: 10.1039/c9md00195f. eCollection 2019 Aug 1.
8
Mitigating RNA Toxicity in Myotonic Dystrophy using Small Molecules.
Int J Mol Sci. 2019 Aug 17;20(16):4017. doi: 10.3390/ijms20164017.
9
A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin.
J Am Chem Soc. 2019 Feb 20;141(7):2960-2974. doi: 10.1021/jacs.8b10558. Epub 2019 Feb 6.
10
Myotonic Dystrophy and Developmental Regulation of RNA Processing.
Compr Physiol. 2018 Mar 25;8(2):509-553. doi: 10.1002/cphy.c170002.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
3
Nucleic acids as therapeutic agents.
Curr Top Med Chem. 2008;8(15):1379-404. doi: 10.2174/156802608786141133.
5
Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners.
J Am Chem Soc. 2008 Aug 20;130(33):11185-94. doi: 10.1021/ja803234t. Epub 2008 Jul 25.
6
RNA toxicity is a component of ataxin-3 degeneration in Drosophila.
Nature. 2008 Jun 19;453(7198):1107-11. doi: 10.1038/nature06909. Epub 2008 Apr 30.
7
Targeting RNA with small molecules.
Chem Rev. 2008 Apr;108(4):1171-224. doi: 10.1021/cr0681546. Epub 2008 Mar 25.
8
A small molecule microarray platform to select RNA internal loop-ligand interactions.
ACS Chem Biol. 2007 Nov 20;2(11):745-54. doi: 10.1021/cb700174r. Epub 2007 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验