Suppr超能文献

肿瘤坏死因子激活孤束核中的星形胶质细胞和儿茶酚胺能神经元:对自主神经控制的影响。

TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: implications for autonomic control.

作者信息

Hermann Gerlinda E, Rogers Richard C

机构信息

Laboratory of Autonomic Nervous System, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA.

出版信息

Brain Res. 2009 Jun 1;1273:72-82. doi: 10.1016/j.brainres.2009.03.059. Epub 2009 Apr 5.

Abstract

Tumor necrosis factor [TNF] produces a profound anorexia associated with gastrointestinal stasis. Our work suggests that the principal site of action of TNF to cause this change in gastric function is via vagal afferents within the nucleus of the solitary tract [NST]. Excitation of these afferents presumably causes gastric stasis by activating downstream NST neurons that, in turn, suppress gastric motility via action on neurons in the dorsal motor nucleus of the vagus that project to the stomach. Results from our parallel studies on gastric vago-vagal reflexes suggest that noradrenergic neurons in the NST are particularly important to the generation of reflex gastroinhibition. Convergence of these observations led us to hypothesize that TNF action in the NST may preferentially affect putative noradrenergic neurons. The current study confirms our observations of a dose-dependent TNF activation of cells [as indicated by cFOS production] in the NST. The phenotypic identity of these TNF-activated neurons in the NST was approximately 29% tyrosine hydroxylase [TH]-positive [i.e., presumably noradrenergic neurons]. In contrast, less than 10% of the nitrergic neurons were activated after TNF exposure. Surprisingly, another 54% of the cFOS-activated cells in the NST were phenotypically identified to be astrocytes. Taken together with previous observations, the present results suggest that intense or prolonged vagal afferent activity [induced by visceral pathway activity, action of gut hormones or cytokines such as TNF] can alter local astrocyte immediate early gene expression that, in turn, can provoke long-term, perhaps permanent changes in the sensitivity of vagal-reflex circuitry.

摘要

肿瘤坏死因子[TNF]会引发严重的厌食并伴有胃肠淤滞。我们的研究表明,TNF导致胃功能发生这种变化的主要作用部位是通过孤束核[NST]内的迷走传入神经。这些传入神经的兴奋大概是通过激活下游的NST神经元导致胃淤滞,而下游的NST神经元又通过作用于投射到胃的迷走神经背运动核中的神经元来抑制胃蠕动。我们对胃迷走-迷走反射的平行研究结果表明,NST中的去甲肾上腺素能神经元对反射性胃抑制的产生尤为重要。这些观察结果的综合使我们推测,TNF在NST中的作用可能优先影响假定的去甲肾上腺素能神经元。当前的研究证实了我们关于NST中细胞[以cFOS产生为指标]被TNF剂量依赖性激活的观察结果。NST中这些被TNF激活的神经元的表型特征约29%为酪氨酸羟化酶[TH]阳性[即大概是去甲肾上腺素能神经元]。相比之下,TNF暴露后不到10%的一氧化氮能神经元被激活。令人惊讶的是,NST中另外54%的cFOS激活细胞经表型鉴定为星形胶质细胞。结合先前的观察结果,目前的结果表明,强烈或持续的迷走传入神经活动[由内脏通路活动、胃肠激素或细胞因子如TNF的作用诱导]可改变局部星形胶质细胞即刻早期基因表达,进而可能引发迷走反射回路敏感性的长期甚至永久性变化。

相似文献

1
TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: implications for autonomic control.
Brain Res. 2009 Jun 1;1273:72-82. doi: 10.1016/j.brainres.2009.03.059. Epub 2009 Apr 5.
2
Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
Auton Neurosci. 2003 Jan 31;103(1-2):19-37. doi: 10.1016/s1566-0702(02)00145-5.
3
CXCL12 sensitizes vago-vagal reflex neurons in the dorsal medulla.
Brain Res. 2013 Jan 25;1492:46-52. doi: 10.1016/j.brainres.2012.11.022. Epub 2012 Nov 23.
6
TNF-alpha-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801.
Am J Physiol Regul Integr Comp Physiol. 2001 Nov;281(5):R1394-400. doi: 10.1152/ajpregu.2001.281.5.R1394.
7
TNF-alpha activates solitary nucleus neurons responsive to gastric distension.
Am J Physiol Gastrointest Liver Physiol. 2000 Sep;279(3):G582-6. doi: 10.1152/ajpgi.2000.279.3.G582.
8
Alpha-1 adrenergic input to solitary nucleus neurones: calcium oscillations, excitation and gastric reflex control.
J Physiol. 2005 Jan 15;562(Pt 2):553-68. doi: 10.1113/jphysiol.2004.076919. Epub 2004 Nov 11.

引用本文的文献

2
Astrocytes in the Ventromedial Hypothalamus Involve Chronic Stress-Induced Anxiety and Bone Loss in Mice.
Neural Plast. 2021 Jul 8;2021:7806370. doi: 10.1155/2021/7806370. eCollection 2021.
3
Astrocytes in the nucleus of the solitary tract: Contributions to neural circuits controlling physiology.
Physiol Behav. 2020 Sep 1;223:112982. doi: 10.1016/j.physbeh.2020.112982. Epub 2020 Jun 11.
4
Thrombin action on astrocytes in the hindbrain of the rat disrupts glycemic and respiratory control.
Am J Physiol Regul Integr Comp Physiol. 2020 Jun 1;318(6):R1068-R1077. doi: 10.1152/ajpregu.00033.2020. Epub 2020 Apr 22.
6
Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism.
Am J Physiol Regul Integr Comp Physiol. 2020 Jan 1;318(1):R38-R48. doi: 10.1152/ajpregu.00133.2019. Epub 2019 Oct 9.
8
Alcohol-associated antecedent stimuli elicit alcohol seeking in non-dependent rats and may activate the insula.
Alcohol. 2019 May;76:91-102. doi: 10.1016/j.alcohol.2018.08.004. Epub 2018 Aug 17.
9
Excitatory amino acid transporters tonically restrain nTS synaptic and neuronal activity to modulate cardiorespiratory function.
J Neurophysiol. 2016 Mar;115(3):1691-702. doi: 10.1152/jn.01054.2015. Epub 2015 Dec 30.

本文引用的文献

1
Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus.
J Neurosci. 2007 Nov 28;27(48):13292-302. doi: 10.1523/JNEUROSCI.3502-07.2007.
2
TNFalpha: a trigger of autonomic dysfunction.
Neuroscientist. 2008 Feb;14(1):53-67. doi: 10.1177/1073858407305725. Epub 2007 Oct 2.
3
Inflammation, depression and dementia: are they connected?
Neurochem Res. 2007 Oct;32(10):1749-56. doi: 10.1007/s11064-007-9385-y. Epub 2007 Aug 20.
5
Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease.
Gastroenterology. 2007 Sep;133(3):918-25. doi: 10.1053/j.gastro.2007.06.009. Epub 2007 Jun 20.
6
Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology.
Headache. 2007 Jul-Aug;47(7):1008-23; discussion 24-5. doi: 10.1111/j.1526-4610.2007.00854.x.
7
Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain.
J Neurosci. 2007 May 30;27(22):6006-18. doi: 10.1523/JNEUROSCI.0176-07.2007.
8
Tumor necrosis factor potentiates central vagal afferent signaling by modulating ryanodine channels.
J Neurosci. 2006 Dec 6;26(49):12642-6. doi: 10.1523/JNEUROSCI.3530-06.2006.
10
Astrocyte control of synaptic transmission and neurovascular coupling.
Physiol Rev. 2006 Jul;86(3):1009-31. doi: 10.1152/physrev.00049.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验