Walczak Aleksandra M, Mugler Andrew, Wiggins Chris H
Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6529-34. doi: 10.1073/pnas.0811999106. Epub 2009 Apr 7.
The past decade has seen great advances in our understanding of the role of noise in gene regulation and the physical limits to signaling in biological networks. Here, we introduce the spectral method for computation of the joint probability distribution over all species in a biological network. The spectral method exploits the natural eigenfunctions of the master equation of birth-death processes to solve for the joint distribution of modules within the network, which then inform each other and facilitate calculation of the entire joint distribution. We illustrate the method on a ubiquitous case in nature: linear regulatory cascades. The efficiency of the method makes possible numerical optimization of the input and regulatory parameters, revealing design properties of, e.g., the most informative cascades. We find, for threshold regulation, that a cascade of strong regulations converts a unimodal input to a bimodal output, that multimodal inputs are no more informative than bimodal inputs, and that a chain of up-regulations outperforms a chain of down-regulations. We anticipate that this numerical approach may be useful for modeling noise in a variety of small network topologies in biology.
在过去十年里,我们对噪声在基因调控中的作用以及生物网络中信号传导的物理极限的理解取得了巨大进展。在此,我们介绍一种用于计算生物网络中所有物种联合概率分布的谱方法。该谱方法利用生死过程主方程的自然本征函数来求解网络内模块的联合分布,这些模块相互影响并有助于计算整个联合分布。我们以自然界中普遍存在的线性调控级联为例来说明该方法。该方法的高效性使得对输入和调控参数进行数值优化成为可能,从而揭示例如最具信息性的级联的设计特性。对于阈值调控,我们发现,一系列强调控会将单峰输入转换为双峰输出,多峰输入并不比双峰输入更具信息性,并且上调链优于下调链。我们预计这种数值方法可能有助于对生物学中各种小网络拓扑结构中的噪声进行建模。