Shen Jia-Wei, Wu Tao, Wang Qi, Kang Yu, Chen Xin
Department of Chemistry, Zhejiang University, 310027, Hangzhou, PR China.
Chemphyschem. 2009 Jun 2;10(8):1260-9. doi: 10.1002/cphc.200800836.
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
带电碳纳米管表面外侧更有序的水合壳层会阻止肽在带电碳纳米管体系中形成更紧密的吸附[图:见原文],但由于静电相互作用,肽在带电碳纳米管表面的结合强度更强。研究肽/蛋白质在单壁碳纳米管(SWNTs)上的吸附动力学和稳定性对于更好地理解基于纳米管的生物系统的性质和本质非常重要。在此,通过显式溶剂分子动力学模拟研究了胰岛素链B肽在不同带电单壁碳纳米管上的吸附动力学和机理。结果表明,所有类型的表面都能有效吸引模型肽。水分子在肽在带电碳纳米管表面的吸附中起重要作用。与肽在中性碳纳米管表面的吸附相比,管外侧更有序的水合壳层会阻止肽在带电碳纳米管体系中形成更紧密的吸附。这种屏蔽效应导致肽与表面之间的构象变化和范德华相互作用较小,但由于强静电相互作用,肽在带电碳纳米管表面的结合强度比在中性碳纳米管表面更强。这些模拟结果表明,通过使碳纳米管带电,有可能提高肽/蛋白质在碳纳米管表面的结合强度,同时保持肽/蛋白质 - 碳纳米管复合物中肽/蛋白质构象的完整性。