Petersson Ulla, Ostgren Carl Johan, Brudin Lars, Nilsson Peter M
Primary Health Care Centre, Söderåkra, Sweden.
Eur J Cardiovasc Prev Rehabil. 2009 Oct;16(5):536-40. doi: 10.1097/HJR.0b013e32832b1833.
As cardiovascular disease (CVD) is one of the most common causes of mortality worldwide, much interest has been focused on reliable methods to predict cardiovascular risk.
A cross-sectional, population-based screening study with 17-year follow-up in Southern Sweden.
We compared a non-laboratory, consultation-based risk assessment method comprising age, sex, present smoking, prevalent diabetes or hypertension at baseline, blood pressure (systolic > or =140 or diastolic > or =90), waist/height ratio and family history of CVD to Systemic COronary Risk Evaluation (SCORE) and a third model including several laboratory analyses, respectively, in predicting CVD risk. The study included clinical baseline data on 689 participants aged 40-59 years without CVD. Blood samples were analyzed for blood glucose, serum lipids, insulin, insulin-like growth factor-I, insulin-like growth factor binding protein-1, C-reactive protein, asymmetric dimethyl arginine and symmetric dimethyl arginine. During 17 years, the incidence of total CVD (first event) and death was registered.
A non-laboratory-based risk assessment model, including variables easily obtained during one consultation visit to a general practitioner, predicted cardiovascular events as accurately [hazard ratio (HR): 2.72; 95% confidence interval (CI): 2.18-3.39, P<0.001] as the established SCORE algorithm (HR: 2.73; 95% CI: 2.10-3.55, P<0.001), which requires laboratory testing. Furthermore, adding a combination of sophisticated laboratory measurements covering lipids, inflammation and endothelial dysfunction, did not confer any additional value to the prediction of CVD risk (HR: 2.72; 95% CI: 2.19-3.37, P<0.001). The c-statistics for the consultation model (0.794; 95% CI: 0.762-0.823) was not significantly different from SCORE (0.767; 95% CI: 0.733-0.798, P=0.12) or the extended model (0.806; 95% CI: 0.774-0.835, P=0.55).
A risk algorithm based on non-laboratory data from a single primary care consultation predicted long-term cardiovascular risk as accurately as either SCORE or an elaborate laboratory-based method in a defined middle-aged population.
由于心血管疾病(CVD)是全球最常见的死亡原因之一,人们一直非常关注预测心血管风险的可靠方法。
一项在瑞典南部进行的基于人群的横断面筛查研究,并进行了17年的随访。
我们将一种基于非实验室、以会诊为基础的风险评估方法(包括年龄、性别、当前吸烟状况、基线时的糖尿病或高血压患病率、血压(收缩压≥140或舒张压≥90)、腰高比和心血管疾病家族史)分别与系统性冠状动脉风险评估(SCORE)以及包含多项实验室分析的第三种模型进行比较,以预测心血管疾病风险。该研究纳入了689名年龄在40 - 59岁且无心血管疾病的参与者的临床基线数据。对血样进行血糖、血脂、胰岛素、胰岛素样生长因子-I、胰岛素样生长因子结合蛋白-1、C反应蛋白、不对称二甲基精氨酸和对称二甲基精氨酸的分析。在17年期间,记录了总心血管疾病(首次事件)的发生率和死亡率。
一种基于非实验室的风险评估模型,包括在一次全科医生会诊期间容易获取的变量,在预测心血管事件方面与既定的需要实验室检测的SCORE算法一样准确[风险比(HR):2.72;95%置信区间(CI):2.18 - 3.39,P < 0.001](HR:2.73;95% CI:2.10 - 3.55,P < 0.001)。此外,添加涵盖血脂、炎症和内皮功能障碍的复杂实验室测量组合,在预测心血管疾病风险方面并没有提供任何额外价值(HR:2.72;95% CI:2.19 - 3.37,P < 0.001)。会诊模型的c统计量(0.794;95% CI:0.762 - 0.823)与SCORE(0.767;95% CI:0.733 - 0.798,P = 0.12)或扩展模型(0.806;95% CI:0.774 - 0.835,P = 0.55)没有显著差异。
在特定的中年人群中,基于单次初级保健会诊的非实验室数据的风险算法在预测长期心血管风险方面与SCORE或复杂的基于实验室的方法一样准确。