Mohammad Khalid S, Chen Carol G, Balooch Guive, Stebbins Elizabeth, McKenna C Ryan, Davis Holly, Niewolna Maria, Peng Xiang Hong, Nguyen Daniel H N, Ionova-Martin Sophi S, Bracey John W, Hogue William R, Wong Darren H, Ritchie Robert O, Suva Larry J, Derynck Rik, Guise Theresa A, Alliston Tamara
Department of Internal Medicine, Division of Endocrinology, University of Virginia, Charlottesville, Virginia, USA.
PLoS One. 2009;4(4):e5275. doi: 10.1371/journal.pone.0005275. Epub 2008 Apr 16.
During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-beta has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-beta signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-beta signaling on bone remain unclear. To examine the role of TGF-beta in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-beta type I receptor (TbetaRI) kinase on bone mass, architecture and material properties. Inhibition of TbetaRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TbetaRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TbetaRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TbetaRI inhibitors may be effective in treating conditions of skeletal fragility.
在发育过程中,生长因子和激素协同作用,以确立各个骨骼独特的大小、形状和材料特性。其中,转化生长因子-β(TGF-β)已被证明在发育过程中调节骨量和骨基质特性。然而,在动态生物学和力学环境中控制出生后骨骼完整性的机制与调节骨骼发育的机制不同。此外,尽管在理解TGF-β信号在成骨细胞和破骨细胞中的作用方面取得了进展,但出生后TGF-β信号改变对骨骼的净效应仍不清楚。为了研究TGF-β在维持出生后骨骼中的作用,我们评估了对TGF-β I型受体(TβRI)激酶进行药理学抑制对骨量、结构和材料特性的影响。抑制TβRI功能可增加骨量和骨质量的多个方面,包括小梁骨结构和椎骨的宏观力学行为。TβRI抑制剂通过增加成骨细胞分化和骨形成,同时减少破骨细胞分化和骨吸收来实现这些效应。此外,它们诱导促进成骨细胞分化的Runx2和EphB4以及拮抗破骨细胞分化的ephrinB2的表达。通过这些合成代谢和抗分解代谢作用,TβRI抑制剂协调多个骨参数的变化,包括骨量、结构、基质矿物质浓度和材料特性,这些变化共同增加了骨骼抗骨折能力。因此,TβRI抑制剂可能对治疗骨骼脆弱状况有效。