Alonso Gérard
UMR CNRS 5203, Institut de Génomique Fonctionnelle, 34000 Montpellier, France.
J Soc Biol. 2009;203(1):39-47. doi: 10.1051/jbio:2009005. Epub 2009 Apr 10.
In adult mammals, the CNS vasculature remains essentially quiescent, excepted for specific pathologies. In the seventies, it was reported that proliferation of astrocytes and endothelial cells occurs within the hypothalamic magnocellular nuclei when strong metabolic activation of the vasopressinergic and oxytocinergic neurons was induced by prolonged hyperosmotic stimulation. Using more appropriate techniques, we first demonstrated that in these nuclei, the proliferative response to osmotic stimulus is essentially associated with local angiogenesis. We then showed that hypothalamic magnocellular neurons express vascular endothelial growth factor (VEGF), a potent angiogenic factor, that plays a major rôle in the angiogenesis induced by osmotic stimuli. We then demonstrated a correlation between increased VEGF secretion and local hypoxia. In AVP-deficient Brattleboro rats, the dramatic activation of magnocellular hypothalamic neurons failed to induce hypoxia, VEGF expression or angiogenesis suggesting a major role of hypothalamic AVP. Lastly we showed that 1) hypoxia and angiogenesis were not observed in non-osmotically stimulated Wistar rats in which circulating AVP was increased by the prolonged infusion of exogenous AVP, 2) contractile arterioles afferent to the magnocellular nuclei were strongly constricted by the perivascular application of AVP via V1a receptors (V1a-R) stimulation, and 3) following the intracerebral administration of selective V1a-R antagonist to osmotically stimulated rats, hypothalamic hypoxia and angiogenesis were inhibited. Together, these data strongly suggest that the angiogenesis induced by osmotic stimulation relates to tissue hypoxia resulting from the constriction of local arterioles, via the stimulation of perivascular V1a-R by AVP locally released from dendrites.
在成年哺乳动物中,中枢神经系统(CNS)血管系统基本上处于静止状态,特定病理情况除外。在20世纪70年代,有报道称,当通过长时间高渗刺激诱导加压素能神经元和催产素能神经元发生强烈代谢激活时,下丘脑大细胞神经核内会出现星形胶质细胞和内皮细胞的增殖。运用更合适的技术,我们首先证明,在这些神经核中,对渗透刺激的增殖反应主要与局部血管生成有关。接着我们表明,下丘脑大细胞神经元表达血管内皮生长因子(VEGF),这是一种强大的血管生成因子,在渗透刺激诱导的血管生成中起主要作用。然后我们证明了VEGF分泌增加与局部缺氧之间存在关联。在抗利尿激素(AVP)缺乏的布拉特洛维大鼠中,下丘脑大细胞神经元的剧烈激活未能诱导缺氧、VEGF表达或血管生成,这表明下丘脑AVP起主要作用。最后我们表明:1)在通过长时间输注外源性AVP使循环中的AVP增加的非渗透性刺激的Wistar大鼠中,未观察到缺氧和血管生成;2)通过刺激V1a受体(V1a-R),经血管周围应用AVP可使传入大细胞神经核的收缩性小动脉强烈收缩;3)在向渗透性刺激的大鼠脑内给予选择性V1a-R拮抗剂后,下丘脑缺氧和血管生成受到抑制。这些数据共同强烈表明,渗透刺激诱导的血管生成与局部小动脉收缩导致的组织缺氧有关,这种收缩是由从树突局部释放的AVP刺激血管周围的V1a-R引起的。