Suppr超能文献

[与视交叉上核内生物钟的光同步相关的结构可塑性机制]

[Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus].

作者信息

Bosler Olivier, Girardet Clémence, Sage-Ciocca Dominique, Jacomy Hélène, François-Bellan Anne-Marie, Becquet Denis

机构信息

Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, CNRS-UMR 6231, Université de la Méditerranée, Faculté de Médecine, secteur nord, boulevard Pierre Dramard, 13916 Marseille Cedex 20, France.

出版信息

J Soc Biol. 2009;203(1):49-63. doi: 10.1051/jbio:2009004. Epub 2009 Apr 10.

Abstract

The mammalian circadian clock, whose central component is located in the suprachiasmatic nucleus of the hypothalamus (SCN), orchestrates rhythmic events in metabolism, physiology and behavior. Adaptation of the organism to its environment requires precise adjustment of the clock to the 24 h astronomical time, primarily by the light/dark cycle. Photic synchronization acts on both the molecular loops which trigger circadian oscillations and the phasing of the multiple SCN cellular oscillators whose coordination permits elaboration of the rhythmic message that will be distributed throughout the organism. It is concomitant with structural plastic events characterized by day/night rearrangements of the SCN neuronal-glial network. The two main sources of SCN efferents, namely the VIP (vasoactive intestinal peptide)-synthesizing neurons which are major integrators of photic signals and the AVP (arginine-vasopressin)-synthesizing neurons which are known to importantly contribute to conveying rhythmic messages to brain targets, are involved in these mechanisms. Over the light/dark cycle, they indeed undergo ultrastructural changes in the extent of their membrane coverage by glial, axon terminal and/or somato-dendritic elements. These structural rearrangements appear to be dependent on light entrainment, as the rhythmic expression in SCN of glial fibrillary acidic protein (GFAP), a marker for brain astrocytes whose changing expression has proved to be a reliable index of neuronal-glial plasticity, is disrupted under constant darkness. Glucocorticoid hormones, which are known as important endocrine outputs of the clock, are required to maintain amplitude of the SCN GFAP rhythm to normal values, indicating that they modulate astrocytic plasticity within the SCN and, therefore, nycthemeral changes of the configuration of its neuronal-glial network. The view that such plastic events may subserve synchronization of the clock to the light-dark cycle is reinforced by other data showing that the daily fluctuations of circulating glucocorticoids actually are involved in modulation of light effects, contributing to the resistance of the circadian timing system to variations of the photoperiod. It is thus proposed that the capacity of the clock to integrate cyclic variations of the environment rely on the inherent capacity of the SCN to undergo neuronal-glial plasticity.

摘要

哺乳动物的昼夜节律时钟,其核心组件位于下丘脑视交叉上核(SCN),协调新陈代谢、生理和行为中的节律性事件。生物体适应环境需要将时钟精确调整到24小时天文时间,主要通过光/暗周期来实现。光同步作用于触发昼夜节律振荡的分子环路以及多个SCN细胞振荡器的相位,这些振荡器的协调允许产生将在整个生物体中分布的节律性信号。它与以SCN神经胶质网络的昼夜重排为特征的结构可塑性事件同时发生。SCN传出纤维的两个主要来源,即作为光信号主要整合者的VIP(血管活性肠肽)合成神经元和已知对向脑靶标传递节律性信号有重要贡献的AVP(精氨酸加压素)合成神经元,都参与了这些机制。在光/暗周期中,它们确实在被神经胶质、轴突末端和/或体树突成分覆盖的膜范围上经历超微结构变化。这些结构重排似乎依赖于光诱导,因为在持续黑暗条件下,SCN中胶质纤维酸性蛋白(GFAP)的节律性表达会被破坏,GFAP是脑星形胶质细胞的标志物,其表达变化已被证明是神经胶质可塑性的可靠指标。糖皮质激素作为时钟的重要内分泌输出,需要将SCN中GFAP节律的振幅维持在正常值,这表明它们调节SCN内星形胶质细胞的可塑性,从而调节其神经胶质网络构型的昼夜变化。其他数据进一步支持了这样一种观点,即这种可塑性事件可能有助于时钟与明暗周期同步,这些数据表明循环糖皮质激素的每日波动实际上参与了光效应的调节,有助于昼夜节律计时系统对光周期变化的抗性。因此,有人提出时钟整合环境周期性变化的能力依赖于SCN经历神经胶质可塑性的内在能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验