Barranco Francisco, Díaz Javier, Ros Eduardo, del Pino Begoña
Department of Computer Architecture and Technology, University of Granada, 18071 Granada, Spain.
IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):752-62. doi: 10.1109/TSMCB.2008.2009067.
We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.
我们提出了一种基于人工视网膜响应模型来检测时空特征的仿生模型。事件驱动处理通过四种对图像对比度和时间信息进行编码的细胞来实现。我们使用多尺度和秩次编码方案从视网膜输入中选择最重要的线索,评估了运动处理的准确性如何依赖于局部对比度。我们还通过整合时间特征结果开发了一些替代方案,并获得了一种具有高稳定性、低误差和低成本的新的改进型仿生匹配算法。最后,我们定义了一个动态且通用的多模态注意力算子,利用该算子驱动系统关注不同的目标特征,如运动、颜色和纹理。