Suppr超能文献

暴露于不同循环负荷量后腰椎不稳的运动控制

Motor control of lumbar instability following exposure to various cyclic load magnitudes.

作者信息

Ben-Masaud AbdAllah, Solomonow Deborah, Davidson Bradley, Zhou Bing He, Lu Yun, Patel Vikas, Solomonow Moshe

机构信息

Musculoskeletal Disorders Research Laboratory, Bioengineering Division, Department of Orthopedic Surgery, University of Colorado, Health Sciences Center, Denver, CO 80045, USA.

出版信息

Eur Spine J. 2009 Jul;18(7):1022-34. doi: 10.1007/s00586-009-0952-6. Epub 2009 Apr 15.

Abstract

The motor control system may compensate for lumbar instability following cyclic work with differential response to load magnitude. In vivo felines were exposed to a cumulative 1 h of cyclic work at 0.25 Hz. One group exposed to light whereas the second to heavy load while recording lumbar displacement and multifidus EMG during work and in single test cycles over 7 h rest post-work. Significant laxity and reduced reflexive EMG activity were evident immediately post-work in both groups. EMG and laxity recovered over 7 h rest in the group exposed to light load whereas in the group exposed to heavy load, motor control compensation was triggered within 1-2 h post-work. The compensation was expressed by earlier and stronger muscular activation than in baseline. It is concluded that cyclic work is deleterious to spine stability immediately after work. Work with heavy loads elicits delayed motor control compensation whereas work with light loads leaves the spine unstable and exposed to injury for several hours. Overall, prolonged cyclic or repetitive work elicits a transient instability disorder, regardless of the load handled, exposing the individual to potential injury.

摘要

运动控制系统可能会在周期性工作后对腰椎不稳定进行补偿,且对负荷大小有不同的反应。将活体猫暴露于0.25Hz的累积1小时周期性工作中。一组暴露于轻负荷,而另一组暴露于重负荷,同时在工作期间以及工作后7小时休息期间的单个测试周期中记录腰椎位移和多裂肌肌电图。两组在工作刚结束后均出现明显的松弛和反射性肌电活动降低。在轻负荷组中,肌电图和松弛在7小时的休息时间内恢复,而在重负荷组中,运动控制补偿在工作后1-2小时内触发。这种补偿表现为比基线更早且更强的肌肉激活。得出的结论是,周期性工作在工作刚结束后对脊柱稳定性有害。重负荷工作会引发延迟的运动控制补偿,而轻负荷工作会使脊柱在数小时内保持不稳定并易受损伤。总体而言,长时间的周期性或重复性工作会引发短暂的不稳定病症,无论所处理的负荷如何,都会使个体面临潜在的损伤。

相似文献

1
Motor control of lumbar instability following exposure to various cyclic load magnitudes.
Eur Spine J. 2009 Jul;18(7):1022-34. doi: 10.1007/s00586-009-0952-6. Epub 2009 Apr 15.
2
Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading.
Clin Biomech (Bristol). 2000 Mar;15(3):167-75. doi: 10.1016/s0268-0033(99)00062-5.
3
Neuromuscular neutral zones associated with viscoelastic hysteresis during cyclic lumbar flexion.
Spine (Phila Pa 1976). 2001 Jul 15;26(14):E314-24. doi: 10.1097/00007632-200107150-00013.
4
Neuromuscular neutral zones response to cyclic lumbar flexion.
J Biomech. 2008 Sep 18;41(13):2821-8. doi: 10.1016/j.jbiomech.2008.07.010. Epub 2008 Aug 27.
5
Neuromuscular control of lumbar instability following static work of various loads.
Muscle Nerve. 2009 Jan;39(1):71-82. doi: 10.1002/mus.21214.
7
Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization.
Spine (Phila Pa 1976). 1999 Dec 1;24(23):2426-34. doi: 10.1097/00007632-199912010-00003.
8
Neuromuscular neutral zones response to static lumbar flexion: muscular stability compensator.
Clin Biomech (Bristol). 2008 Aug;23(7):870-80. doi: 10.1016/j.clinbiomech.2008.03.069. Epub 2008 May 12.
9
Biomechanics and electromyography of a common idiopathic low back disorder.
Spine (Phila Pa 1976). 2003 Jun 15;28(12):1235-48. doi: 10.1097/01.BRS.0000065568.47818.B9.
10
Static load repetition is a risk factor in the development of lumbar cumulative musculoskeletal disorder.
Spine (Phila Pa 1976). 2004 Dec 1;29(23):2643-53. doi: 10.1097/01.brs.0000146052.44581.5f.

引用本文的文献

1
Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments.
Eur Spine J. 2010 Aug;19(8):1330-9. doi: 10.1007/s00586-010-1371-4. Epub 2010 Mar 25.

本文引用的文献

1
Creep response of the lumbar spine to prolonged full flexion.
Clin Biomech (Bristol). 1992 Feb;7(1):43-6. doi: 10.1016/0268-0033(92)90007-Q.
2
The morphology of the human lumbar multifidus.
Clin Biomech (Bristol). 1986 Nov;1(4):196-204. doi: 10.1016/0268-0033(86)90146-4.
3
Strain and load thresholds for cervical muscle recruitment in response to quasi-static tensile stretch of the caprine C5-C6 facet joint capsule.
J Electromyogr Kinesiol. 2009 Dec;19(6):e387-94. doi: 10.1016/j.jelekin.2009.01.002. Epub 2009 Feb 14.
4
Neuromuscular control of lumbar instability following static work of various loads.
Muscle Nerve. 2009 Jan;39(1):71-82. doi: 10.1002/mus.21214.
5
Validation of the sheep as a large animal model for the study of vertebral osteoporosis.
Eur Spine J. 2009 Feb;18(2):244-53. doi: 10.1007/s00586-008-0813-8. Epub 2008 Nov 18.
6
Neuromuscular neutral zones response to cyclic lumbar flexion.
J Biomech. 2008 Sep 18;41(13):2821-8. doi: 10.1016/j.jbiomech.2008.07.010. Epub 2008 Aug 27.
7
Frequency of cyclic lumbar loading is a risk factor for cumulative trauma disorder.
Muscle Nerve. 2008 Jul;38(1):867-74. doi: 10.1002/mus.21019.
8
Neuromuscular neutral zones response to static lumbar flexion: muscular stability compensator.
Clin Biomech (Bristol). 2008 Aug;23(7):870-80. doi: 10.1016/j.clinbiomech.2008.03.069. Epub 2008 May 12.
9
Determination of torque-limits for human and cat lumbar spine specimens during displacement-controlled physiological motions.
Spine J. 2009 Jan-Feb;9(1):77-86. doi: 10.1016/j.spinee.2007.07.391. Epub 2007 Nov 5.
10
Neuromuscular response to cyclic lumbar twisting.
Hum Factors. 2007 Oct;49(5):820-9. doi: 10.1518/001872007X230190.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验