Pan Hongcheng, Cui Rongjing, Zhu Jun-Jie
Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China.
J Phys Chem B. 2008 Dec 25;112(51):16895-901. doi: 10.1021/jp807251k.
A near-infrared (NIR) fluorescence sensing strategy for glucose and xanthine has been developed based on the interaction between CdTe quantum dots (QDs) and biocatalytic generated Au nanoparticles. The fluorescence of CdTe QDs is modulated by changing concentration of AuCl4- and Au nanoparticles during the growth process of Au nanoparticles. Two cases were considered. In the first case, the glucose oxidase (GOx) catalyzes the oxidation of glucose to generate H2O2. Under the catalysis of Au nanoparticles seeds, the AuCl4- is reduced by the H2O2 to form the Au nanoparticles. In the second case, the xanthine oxidase acts as the reducing reagents to reduce AuCl4- forming Au nanoparticles. The interaction between CdTe quantum dots (QDs), AuCl4-, and Au nanoparticles resulted in the fluorescence changes of CdTe QDs, allowing the detection of glucose and xanthine. The effects of Au nanoparticles and AuCl4- on the fluorescence of CdTe QDs were discussed. A model was developed to explain the mechanism of the CdTe QDs fluorescence changes by biocatalytic growth of Au nanoparticles. The difference in the Stern-Volmer quenching constant between AuCl4- and Au nanoparticles is the dominant factor for the CdTe QDs fluorescence changes. The developed method provides low limits of detection, wide linear ranges, and detection wavelengths in the NIR region and can be easily extended to other substrate/oxidase systems.
基于碲化镉量子点(QDs)与生物催化生成的金纳米颗粒之间的相互作用,开发了一种用于检测葡萄糖和黄嘌呤的近红外(NIR)荧光传感策略。在金纳米颗粒的生长过程中,通过改变四氯金酸根离子(AuCl4-)和金纳米颗粒的浓度来调节碲化镉量子点的荧光。考虑了两种情况。在第一种情况下,葡萄糖氧化酶(GOx)催化葡萄糖氧化生成过氧化氢(H2O2)。在金纳米颗粒种子的催化作用下,H2O2将AuCl4-还原形成金纳米颗粒。在第二种情况下,黄嘌呤氧化酶作为还原剂将AuCl4-还原形成金纳米颗粒。碲化镉量子点(QDs)、AuCl4-和金纳米颗粒之间的相互作用导致了碲化镉量子点的荧光变化,从而实现了对葡萄糖和黄嘌呤的检测。讨论了金纳米颗粒和AuCl4-对碲化镉量子点荧光的影响。建立了一个模型来解释通过金纳米颗粒的生物催化生长导致碲化镉量子点荧光变化的机制。AuCl4-和金纳米颗粒之间的斯特恩-沃尔默猝灭常数差异是碲化镉量子点荧光变化的主要因素。所开发的方法具有低检测限、宽线性范围以及近红外区域的检测波长,并且可以很容易地扩展到其他底物/氧化酶系统。