Kim Hyoseok, Choi Yoon Jeong, Lee Yoon Sup
Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Republic of Korea.
J Phys Chem B. 2008 Dec 18;112(50):16021-9. doi: 10.1021/jp8056306.
Structures and vibrational frequencies of group 17 fluorides EF3 (E = I, At, and element 117) are calculated at the density functional theory (DFT) level of theory using relativistic effective core potentials (RECPs) with and without spin-orbit terms in order to investigate the effects of spin-orbit interactions and electron correlations on the structures and vibrational frequencies of EF3. Various tests imply that spin-orbit and electron correlation effects estimated presently from Hartree-Fock (HF) and DFT calculations with RECPs with and without spin-orbit terms are quite reasonable. Spin-orbit and electron correlation effects generally increase bond lengths and/or angles in both C2v and D3h structures. For IF3, the C2v structure is a global minimum, and the D3h structure is a second-order saddle point in both HF and DFT calculations with and without spin-orbit interactions. Spin-orbit effects for IF3 are negligible in comparison to electron correlation effects. The D3h global minimum is the only minimum structure for (117)F3 in all RECP calculations, and the C2v structure is neither a local minimum nor a saddle point. In the case of AtF3, the C2v structure is found to be a local minimum in all RECP calculations without spin-orbit terms, and the D3h structure becomes a local minimum at the DFT level of theory with and without spin-orbit interactions. In the HF calculation with spin-orbit terms, the D3h structure of AtF3 is a second-order saddle point. AtF3 is a borderline case between the valence-shell-electron-pair-repulsion (VSEPR) structure of IF3 and the non-VSEPR structure of (117)F3. Relativistic effects, including scalar relativistic and spin-orbit effects, and electron correlation effects together or separately stabilize the D3h structures more than the C2v structures. As a result, one may suggest that the VSEPR predictions agree very well with the structures optimized by the nonrelativistic HF level of theory even for heavy-atom molecules but not so well with those from more elaborate theoretical methods. Vibrational frequencies of AtF3 and (117)F3 are modified substantially and nonadditively by spin-orbit and electron correlation contributions. This is one of those rare cases for which vibrational frequencies of the closed-shell molecules are significantly affected by spin-orbit interactions. Spin-orbit interactions decrease all vibrational frequencies of EF3 molecules considered.
利用相对论有效核势(RECP),在含和不含自旋轨道项的密度泛函理论(DFT)水平上计算了第17族氟化物EF3(E = I、At和117号元素)的结构和振动频率,以研究自旋轨道相互作用和电子关联对EF3结构和振动频率的影响。各种测试表明,目前通过含和不含自旋轨道项的RECP从Hartree-Fock(HF)和DFT计算估计的自旋轨道和电子关联效应是相当合理的。自旋轨道和电子关联效应通常会增加C2v和D3h结构中的键长和/或键角。对于IF3,在含和不含自旋轨道相互作用的HF和DFT计算中,C2v结构都是全局最小值,D3h结构是二阶鞍点。与电子关联效应相比,IF3的自旋轨道效应可忽略不计。在所有RECP计算中,D3h全局最小值是(117)F3的唯一最小结构,C2v结构既不是局部最小值也不是鞍点。在AtF3的情况下,在所有不含自旋轨道项的RECP计算中,C2v结构是局部最小值,在含和不含自旋轨道相互作用的DFT理论水平上,D3h结构成为局部最小值。在含自旋轨道项的HF计算中,AtF3的D3h结构是二阶鞍点。AtF3是IF3的价层电子对排斥(VSEPR)结构和(117)F3的非VSEPR结构之间的临界情况。相对论效应,包括标量相对论效应和自旋轨道效应,以及电子关联效应共同或分别使D3h结构比C2v结构更稳定。因此,有人可能会认为,即使对于重原子分子,VSEPR预测与通过非相对论HF理论水平优化的结构非常吻合,但与那些更精细理论方法得到的结构不太吻合。AtF3和(117)F3的振动频率因自旋轨道和电子关联贡献而发生显著的非加和性改变。这是闭壳层分子振动频率受自旋轨道相互作用显著影响的少数情况之一。自旋轨道相互作用降低了所考虑的EF3分子的所有振动频率。