Suppr超能文献

货物介导的快速Rab4依赖性回收途径的调控。

Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway.

作者信息

Yudowski Guillermo A, Puthenveedu Manojkumar A, Henry Anastasia G, von Zastrow Mark

机构信息

Department of Psychiatry, University of California San Francisco, San Francisco, CA 94158, USA.

出版信息

Mol Biol Cell. 2009 Jun;20(11):2774-84. doi: 10.1091/mbc.e08-08-0892. Epub 2009 Apr 15.

Abstract

Membrane trafficking is well known to regulate receptor-mediated signaling processes, but less is known about whether signaling receptors conversely regulate the membrane trafficking machinery. We investigated this question by focusing on the beta-2 adrenergic receptor (B2AR), a G protein-coupled receptor whose cellular signaling activity is controlled by ligand-induced endocytosis followed by recycling. We used total internal reflection fluorescence microscopy (TIR-FM) and tagging with a pH-sensitive GFP variant to image discrete membrane trafficking events mediating B2AR endo- and exocytosis. Within several minutes after initiating rapid endocytosis of B2ARs by the adrenergic agonist isoproterenol, we observed bright "puffs" of locally increased surface fluorescence intensity representing discrete Rab4-dependent recycling events. These events reached a constant frequency in the continuous presence of isoproterenol, and agonist removal produced a rapid (observed within 1 min) and pronounced (approximately twofold) increase in recycling event frequency. This regulation required receptor signaling via the cAMP-dependent protein kinase (PKA) and a specific PKA consensus site located in the carboxyl-terminal cytoplasmic tail of the B2AR itself. B2AR-mediated regulation was not restricted to this membrane cargo, however, as transferrin receptors packaged in the same population of recycling vesicles were similarly affected. In contrast, net recycling measured over a longer time interval (10 to 30 min) was not detectably regulated by B2AR signaling. These results identify rapid regulation of a specific recycling pathway by a signaling receptor cargo.

摘要

膜运输调节受体介导的信号传导过程已广为人知,但信号受体是否反过来调节膜运输机制却鲜为人知。我们通过聚焦于β-2肾上腺素能受体(B2AR)来研究这个问题,B2AR是一种G蛋白偶联受体,其细胞信号活性由配体诱导的内吞作用随后再循环来控制。我们使用全内反射荧光显微镜(TIR-FM)和用对pH敏感的GFP变体进行标记,以成像介导B2AR内吞和外排的离散膜运输事件。在用肾上腺素能激动剂异丙肾上腺素启动B2AR的快速内吞作用后的几分钟内,我们观察到表面荧光强度局部增加的明亮“ puff”,代表离散的Rab4依赖性再循环事件。在持续存在异丙肾上腺素的情况下,这些事件达到恒定频率,去除激动剂会使再循环事件频率迅速(在1分钟内观察到)且显著(约两倍)增加。这种调节需要通过cAMP依赖性蛋白激酶(PKA)和位于B2AR自身羧基末端细胞质尾部的特定PKA共有位点进行受体信号传导。然而,B2AR介导的调节并不局限于这种膜货物,因为包装在同一群再循环囊泡中的转铁蛋白受体也受到类似影响。相比之下,在较长时间间隔(10至30分钟)内测量的净再循环未被B2AR信号传导可检测地调节。这些结果确定了信号受体货物对特定再循环途径的快速调节。

相似文献

1
Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway.
Mol Biol Cell. 2009 Jun;20(11):2774-84. doi: 10.1091/mbc.e08-08-0892. Epub 2009 Apr 15.
2
The composition of the beta-2 adrenergic receptor oligomer affects its membrane trafficking after ligand-induced endocytosis.
Mol Pharmacol. 2005 Jan;67(1):288-97. doi: 10.1124/mol.104.003608. Epub 2004 Oct 18.
3
Role of AKAP79/150 protein in β1-adrenergic receptor trafficking and signaling in mammalian cells.
J Biol Chem. 2013 Nov 22;288(47):33797-33812. doi: 10.1074/jbc.M113.470559. Epub 2013 Oct 11.
4
Arf6 negatively controls the rapid recycling of the β2 adrenergic receptor.
J Cell Sci. 2012 Sep 1;125(Pt 17):4026-35. doi: 10.1242/jcs.102343. Epub 2012 May 18.
6
Reprogramming of G protein-coupled receptor recycling and signaling by a kinase switch.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15289-94. doi: 10.1073/pnas.1306340110. Epub 2013 Sep 3.
7
Phosphorylation state of mu-opioid receptor determines the alternative recycling of receptor via Rab4 or Rab11 pathway.
Mol Endocrinol. 2008 Aug;22(8):1881-92. doi: 10.1210/me.2007-0496. Epub 2008 Jun 11.
8
Recycling and resensitization of the neurokinin 1 receptor. Influence of agonist concentration and Rab GTPases.
J Biol Chem. 2004 Jul 16;279(29):30670-9. doi: 10.1074/jbc.M402479200. Epub 2004 May 5.
10
A long lasting β1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes.
J Biol Chem. 2014 May 23;289(21):14771-81. doi: 10.1074/jbc.M113.542589. Epub 2014 Apr 8.

引用本文的文献

1
A calcium-sensing receptor dileucine motif directs internalization to spatially distinct endosomal signaling pathways.
iScience. 2025 May 13;28(6):112651. doi: 10.1016/j.isci.2025.112651. eCollection 2025 Jun 20.
2
BIN1 knockdown rescues systolic dysfunction in aging male mouse hearts.
Nat Commun. 2024 Apr 25;15(1):3528. doi: 10.1038/s41467-024-47847-8.
4
KDEL Receptor Trafficking to the Plasma Membrane Is Regulated by ACBD3 and Rab4A-GTP.
Cells. 2023 Apr 4;12(7):1079. doi: 10.3390/cells12071079.
5
Vesicle-associated membrane protein 2 is a cargo-selective v-SNARE for a subset of GPCRs.
J Cell Biol. 2023 Jul 3;222(7). doi: 10.1083/jcb.202207070. Epub 2023 Apr 6.
6
Electrophysiological Techniques on the Study of Endolysosomal Ion Channels.
Handb Exp Pharmacol. 2023;278:217-233. doi: 10.1007/164_2023_638.
7
The β2-adrenergic receptor in the apical membrane of intestinal enterocytes senses sugars to stimulate glucose uptake from the gut.
Front Cell Dev Biol. 2023 Jan 9;10:1041930. doi: 10.3389/fcell.2022.1041930. eCollection 2022.
9
Nuclear localization of histamine receptor 2 in primary human lymphatic endothelial cells.
Biol Open. 2022 Jul 15;11(7). doi: 10.1242/bio.059191. Epub 2022 Jul 1.
10
Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety.
Front Cell Neurosci. 2022 Feb 24;15:804592. doi: 10.3389/fncel.2021.804592. eCollection 2021.

本文引用的文献

1
Rapid recycling of beta-adrenergic receptors is dependent on the actin cytoskeleton and myosin Vb.
Traffic. 2008 Nov;9(11):1958-71. doi: 10.1111/j.1600-0854.2008.00813.x. Epub 2008 Aug 9.
2
Glutamate receptor dynamics in dendritic microdomains.
Neuron. 2008 May 22;58(4):472-97. doi: 10.1016/j.neuron.2008.04.030.
3
The ubiquitin-like protein PLIC-2 is a negative regulator of G protein-coupled receptor endocytosis.
Mol Biol Cell. 2008 Mar;19(3):1252-60. doi: 10.1091/mbc.e07-08-0775. Epub 2008 Jan 16.
4
Regulation of GPCRs by endocytic membrane trafficking and its potential implications.
Annu Rev Pharmacol Toxicol. 2008;48:537-68. doi: 10.1146/annurev.pharmtox.48.113006.094830.
5
G protein-coupled receptor sorting to endosomes and lysosomes.
Annu Rev Pharmacol Toxicol. 2008;48:601-29. doi: 10.1146/annurev.pharmtox.48.113006.094646.
6
Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors.
J Neurosci. 2007 Oct 10;27(41):11112-21. doi: 10.1523/JNEUROSCI.2465-07.2007.
7
Signaling on the endocytic pathway.
Curr Opin Cell Biol. 2007 Aug;19(4):436-45. doi: 10.1016/j.ceb.2007.04.021. Epub 2007 Jul 26.
8
Regulation of receptor trafficking by GRKs and arrestins.
Annu Rev Physiol. 2007;69:451-82. doi: 10.1146/annurev.physiol.69.022405.154712.
9
Cargo regulates clathrin-coated pit dynamics.
Cell. 2006 Oct 6;127(1):113-24. doi: 10.1016/j.cell.2006.08.035.
10
Distinct modes of regulated receptor insertion to the somatodendritic plasma membrane.
Nat Neurosci. 2006 May;9(5):622-7. doi: 10.1038/nn1679. Epub 2006 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验