Zagorodnyuk V P, Gregory S, Costa M, Brookes S J H, Tramontana M, Giuliani S, Maggi C A
Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia.
Br J Pharmacol. 2009 Jun;157(4):607-19. doi: 10.1111/j.1476-5381.2009.00166.x. Epub 2009 Apr 3.
Bladder contractility is regulated by intrinsic myogenic mechanisms interacting with autonomic nerves. In this study, we have investigated the physiological role of spontaneous release of acetylcholine in guinea pig and rat bladders.
Conventional isotonic or pressure transducers were used to record contractile activity of guinea pig and rat bladders.
Hyoscine (3 micromol x L(-1)), but not tetrodotoxin (TTX, 1 micromol x L(-1)), reduced basal tension, distension-evoked contractile activity and physostigmine (1 micromol x L(-1))-evoked contractions of the whole guinea pig bladder and muscle strips in vitro. omega-Conotoxin GVIA (0.3 micromol x L(-1)) did not affect physostigmine-induced contractions when given either alone or in combination with omega-agatoxin IVA (0.1 micromol x L(-1)) and SNX 482 (0.3 micromol x L(-1)). After 5 days in organotypic culture, when extrinsic nerves had significantly degenerated, the ability of physostigmine to induce contractions was reduced in the dorso-medial strips, but not in lateral strips (which have around 15 times more intramural neurones). Most muscle strips from adult rats lacked intramural neurones. After 5 days in culture, physostigmine-induced or electrical field stimulation-induced contractions of the rat bladder strips were greatly reduced. In anaesthetized rats, topical application of physostigmine (5-500 nmol) on the bladder produced a TTX-resistant tonic contraction that was abolished by atropine (4.4 micromol x kg(-1) i.v.).
The data indicate that there is spontaneous TTX-resistant release of acetylcholine from autonomic cholinergic extrinsic and intrinsic nerves, which significantly affects bladder contractility. This release is resistant to blockade of N, P/Q and R type Ca(2+) channels.
膀胱收缩性受与自主神经相互作用的内在肌源性机制调节。在本研究中,我们调查了豚鼠和大鼠膀胱中乙酰胆碱自发释放的生理作用。
使用传统的等张或压力换能器记录豚鼠和大鼠膀胱的收缩活动。
东莨菪碱(3 μmol·L⁻¹)而非河豚毒素(TTX,1 μmol·L⁻¹)降低了体外豚鼠整个膀胱及肌条的基础张力、扩张诱发的收缩活动以及毒扁豆碱(1 μmol·L⁻¹)诱发的收缩。ω-芋螺毒素GVIA(0.3 μmol·L⁻¹)单独给药或与ω-阿加毒素IVA(0.1 μmol·L⁻¹)和SNX 482(0.3 μmol·L⁻¹)联合给药时均不影响毒扁豆碱诱导的收缩。在器官型培养5天后,当外在神经显著退化时,毒扁豆碱诱导收缩的能力在背内侧肌条中降低,但在外侧肌条中未降低(外侧肌条的壁内神经元数量约多15倍)。成年大鼠的大多数肌条缺乏壁内神经元。培养5天后,毒扁豆碱诱导或电场刺激诱导的大鼠膀胱肌条收缩大大降低。在麻醉大鼠中,膀胱局部应用毒扁豆碱(5 - 500 nmol)产生了一种TTX抗性的强直性收缩,该收缩被阿托品(4.4 μmol·kg⁻¹静脉注射)消除。
数据表明自主胆碱能外在和内在神经存在自发的TTX抗性乙酰胆碱释放,这显著影响膀胱收缩性。这种释放对N、P/Q和R型Ca²⁺通道的阻断具有抗性。