Suppr超能文献

是时候重新调整神经影像数据库和数字存储库的优先级了吗?

Is it time to re-prioritize neuroimaging databases and digital repositories?

作者信息

Van Horn John Darrell, Toga Arthur W

机构信息

Department of Neurology, UCLA School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7334, USA.

出版信息

Neuroimage. 2009 Oct 1;47(4):1720-34. doi: 10.1016/j.neuroimage.2009.03.086. Epub 2009 Apr 14.

Abstract

The development of in vivo brain imaging has lead to the collection of large quantities of digital information. In any individual research article, several tens of gigabytes-worth of data may be represented-collected across normal and patient samples. With the ease of collecting such data, there is increased desire for brain imaging datasets to be openly shared through sophisticated databases. However, very often the raw and pre-processed versions of these data are not available to researchers outside of the team that collected them. A range of neuroimaging databasing approaches has streamlined the transmission, storage, and dissemination of data from such brain imaging studies. Though early sociological and technical concerns have been addressed, they have not been ameliorated altogether for many in the field. In this article, we review the progress made in neuroimaging databases, their role in data sharing, data management, potential for the construction of brain atlases, recording data provenance, and value for re-analysis, new publication, and training. We feature the LONI IDA as an example of an archive being used as a source for brain atlas workflow construction, list several instances of other successful uses of image databases, and comment on archive sustainability. Finally, we suggest that, given these developments, now is the time for the neuroimaging community to re-prioritize large-scale databases as a valuable component of brain imaging science.

摘要

体内脑成像技术的发展带来了大量数字信息的收集。在任何一篇单独的研究论文中,可能涵盖跨越正常样本和患者样本收集的数十GB的数据。随着收集此类数据变得轻而易举,人们越来越希望通过精密的数据库来公开共享脑成像数据集。然而,这些数据的原始版本和预处理版本往往不对收集团队之外的研究人员开放。一系列神经成像数据库方法简化了此类脑成像研究数据的传输、存储和传播。尽管早期的社会学和技术问题已得到解决,但该领域的许多问题并未完全得到改善。在本文中,我们回顾了神经成像数据库取得的进展、它们在数据共享、数据管理、构建脑图谱的潜力、记录数据来源以及重新分析、新出版物和培训价值方面的作用。我们以LONI IDA为例,说明其作为脑图谱工作流程构建来源的存档,列举其他图像数据库成功使用的几个实例,并对存档的可持续性发表评论。最后,我们认为,鉴于这些发展,现在是神经成像界将大规模数据库重新列为脑成像科学重要组成部分的时候了。

相似文献

1
Is it time to re-prioritize neuroimaging databases and digital repositories?
Neuroimage. 2009 Oct 1;47(4):1720-34. doi: 10.1016/j.neuroimage.2009.03.086. Epub 2009 Apr 14.
4
The Image and Data Archive at the Laboratory of Neuro Imaging.
Neuroimage. 2016 Jan 1;124(Pt B):1080-1083. doi: 10.1016/j.neuroimage.2015.04.067. Epub 2015 May 14.
5
Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment.
Brain Imaging Behav. 2015 Mar;9(1):89-103. doi: 10.1007/s11682-015-9354-z.
6
Provenance in neuroimaging.
Neuroimage. 2008 Aug 1;42(1):178-95. doi: 10.1016/j.neuroimage.2008.04.186. Epub 2008 Apr 25.
7
8
Workflow-enabled distributed component-based information architecture for digital medical imaging enterprises.
IEEE Trans Inf Technol Biomed. 2003 Sep;7(3):171-83. doi: 10.1109/titb.2003.813790.
9
A neuroinformatics database system for disease-oriented neuroimaging research.
Acad Radiol. 2004 Mar;11(3):345-58. doi: 10.1016/s1076-6332(03)00676-7.
10
Re: "Do you purge your PACS archive? Should you?".
J Am Coll Radiol. 2009 Nov;6(11):815-6. doi: 10.1016/j.jacr.2009.07.018.

引用本文的文献

1
Challenging the status quo: A guide to open and reproducible neuroimaging for early career researchers.
Imaging Neurosci (Camb). 2025 Jun 24;3. doi: 10.1162/IMAG.a.21. eCollection 2025.
4
Optimizing neuroscience data management by combining REDCap, BIDS and SQLite: a case study in Deep Brain Stimulation.
Front Neuroinform. 2024 Sep 5;18:1435971. doi: 10.3389/fninf.2024.1435971. eCollection 2024.
5
Editorial: What the New White House Rules on Equitable Access Mean for the Neurosciences.
Neuroinformatics. 2023 Jan;21(1):1-4. doi: 10.1007/s12021-022-09618-y. Epub 2022 Dec 25.
6
Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies.
Front Psychiatry. 2021 Jun 17;12:682495. doi: 10.3389/fpsyt.2021.682495. eCollection 2021.
8
From the Wet Lab to the Web Lab: A Paradigm Shift in Brain Imaging Research.
Front Neuroinform. 2019 Mar 1;13:3. doi: 10.3389/fninf.2019.00003. eCollection 2019.
9
Integration of Data and Phenotypic Data Within a Unified Extensible Multimodal Framework.
Front Neuroinform. 2018 Dec 18;12:91. doi: 10.3389/fninf.2018.00091. eCollection 2018.
10
Big data sharing and analysis to advance research in post-traumatic epilepsy.
Neurobiol Dis. 2019 Mar;123:127-136. doi: 10.1016/j.nbd.2018.05.026. Epub 2018 Jun 1.

本文引用的文献

2
Neuroscientist: my data published without authorization are 'misleading'.
Nature. 2008 Jul 3;454(7200):6-7. doi: 10.1038/454006a.
3
Provenance in neuroimaging.
Neuroimage. 2008 Aug 1;42(1):178-95. doi: 10.1016/j.neuroimage.2008.04.186. Epub 2008 Apr 25.
4
Automatic localization of anatomical point landmarks for brain image processing algorithms.
Neuroinformatics. 2008 Summer;6(2):135-48. doi: 10.1007/s12021-008-9018-x. Epub 2008 May 30.
5
Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis.
Neuroimage. 2008 Aug 1;42(1):343-56. doi: 10.1016/j.neuroimage.2008.04.025. Epub 2008 Apr 16.
6
Domain-specific data sharing in neuroscience: what do we have to learn from each other?
Neuroinformatics. 2008 Summer;6(2):117-21. doi: 10.1007/s12021-008-9019-9. Epub 2008 May 13.
7
Computational anatomical methods as applied to ageing and dementia.
Br J Radiol. 2007 Dec;80 Spec No 2:S78-91. doi: 10.1259/BJR/20005470.
8
Brain anatomical structure segmentation by hybrid discriminative/generative models.
IEEE Trans Med Imaging. 2008 Apr;27(4):495-508. doi: 10.1109/TMI.2007.908121.
9
Regional hippocampal atrophy in multiple sclerosis.
Brain. 2008 Apr;131(Pt 4):1134-41. doi: 10.1093/brain/awn030.
10
Workflow-based approaches to neuroimaging analysis.
Methods Mol Biol. 2007;401:235-66. doi: 10.1007/978-1-59745-520-6_14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验