Campbell G K, Boyd M M, Thomsen J W, Martin M J, Blatt S, Swallows M D, Nicholson T L, Fortier T, Oates C W, Diddams S A, Lemke N D, Naidon P, Julienne P, Ye Jun, Ludlow A D
JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder, CO 80309-0440, USA.
Science. 2009 Apr 17;324(5925):360-3. doi: 10.1126/science.1169724.
At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks with fermionic isotopes. However, by probing an optical clock transition with thousands of lattice-confined, ultracold fermionic strontium atoms, we observed density-dependent collisional frequency shifts. These collision effects were measured systematically and are supported by a theoretical description attributing them to inhomogeneities in the probe excitation process that render the atoms distinguishable. This work also yields insights for zeroing the clock density shift.
在超低温下,泡利不相容原理抑制了相同费米子之间的碰撞。这推动了使用费米子同位素的原子钟的发展。然而,通过用数千个晶格囚禁的超冷费米子锶原子探测光钟跃迁,我们观察到了与密度相关的碰撞频移。这些碰撞效应得到了系统测量,并得到了一种理论描述的支持,该理论将其归因于探测激发过程中的不均匀性,这种不均匀性使原子变得可区分。这项工作还为消除时钟密度偏移提供了见解。