Piascik J R, Swift E J, Thompson J Y, Grego S, Stoner B R
RTI International, Center for Materials and Electronic Technologies, Research Triangle Park, NC 27709-2194, USA.
Dent Mater. 2009 Sep;25(9):1116-21. doi: 10.1016/j.dental.2009.03.008. Epub 2009 Apr 18.
The overall goal of this research was to develop a practical method to chemically modify the surface of high strength dental ceramics (i.e. zirconia) to facilitate viable, robust adhesive bonding using commercially available silanes and resin cements.
Investigation focused on a novel approach to surface functionalize zirconia with a Si(x)O(y) "seed" layer that would promote chemical bonding with traditional silanes. ProCAD and ZirCAD blocks were bonded to a dimensionally similar composite block using standard techniques designed for silica-containing materials (silane and resin cement). ZirCAD blocks were treated with SiCl4 by vapor deposition under two different conditions prior to bonding. Microtensile bars were prepared and subjected to tensile forces at a crosshead speed of 1 mm/min scanning electron microscopy was used to analyze fracture surfaces and determine failure mode; either composite cohesive failure (partial or complete cohesive failure within composite) or adhesive failure (partial or complete adhesive failure).
Peak stress values were analyzed using single-factor ANOVA (p<0.05). Microtensile testing results revealed that zirconia with a surface treatment of 2.6 nm Si(x)O(y) thick "seed" layer was similar in strength to the porcelain group (control). Analysis of failure modes indicated the above groups displayed higher percentages of in-composite failures. Other groups tested had lower strength values and displayed adhesive failure characteristics.
Mechanical data support that utilizing a gas-phase chloro-silane pretreatment to deposit ultra-thin silica-like seed layers can improve adhesion to zirconia using traditional silanation and bonding techniques. This technology could have clinical impact on how high strength dental materials are used today.
本研究的总体目标是开发一种实用方法,对高强度牙科陶瓷(即氧化锆)表面进行化学改性,以便使用市售硅烷和树脂水门汀实现可行、稳固的粘结。
研究聚焦于一种用Si(x)O(y)“种子”层对氧化锆进行表面功能化的新方法,该“种子”层能促进与传统硅烷的化学键合。使用针对含二氧化硅材料(硅烷和树脂水门汀)设计的标准技术,将ProCAD和ZirCAD块体粘结到尺寸相似的复合块体上。在粘结之前,对ZirCAD块体在两种不同条件下通过气相沉积用SiCl4进行处理。制备微拉伸棒,并以1毫米/分钟的十字头速度施加拉力,使用扫描电子显微镜分析断裂表面并确定失效模式;即复合内聚破坏(复合材料内部分或完全内聚破坏)或粘结破坏(部分或完全粘结破坏)。
使用单因素方差分析(p<0.05)分析峰值应力值。微拉伸测试结果表明,表面处理有2.6纳米厚Si(x)O(y)“种子”层的氧化锆强度与瓷组(对照)相似。失效模式分析表明,上述组显示出更高比例的复合材料内破坏。测试的其他组强度值较低,并表现出粘结破坏特征。
力学数据支持,利用气相氯硅烷预处理来沉积超薄类二氧化硅种子层,可使用传统硅烷化和粘结技术提高对氧化锆的粘结力。这项技术可能会对当今高强度牙科材料的使用产生临床影响。